日韩经典一区,日韩a免费,国产欧美一区二区三区观看,日韩一区国产二区欧美三,精品日韩欧美一区二区三区在线播放,国产免费一级视频,日韩国产一区二区

數(shù)學(xué)說課稿

時間:2025-02-16 07:15:43 數(shù)學(xué)說課稿 我要投稿

【必備】數(shù)學(xué)說課稿匯總6篇

  作為一名默默奉獻的教育工作者,就難以避免地要準備說課稿,說課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么什么樣的說課稿才是好的呢?下面是小編幫大家整理的數(shù)學(xué)說課稿6篇,歡迎閱讀,希望大家能夠喜歡。

【必備】數(shù)學(xué)說課稿匯總6篇

數(shù)學(xué)說課稿 篇1

  一、說教材

  1、本節(jié)教材是義務(wù)教育小學(xué)數(shù)學(xué)(魯教版)六年下冊第二單元《圓柱和圓錐》中《圓錐體積》的第一課時。教學(xué)內(nèi)容為圓錐體積計算公式的推導(dǎo)、例五、相應(yīng)的“試一試”及“練一練”。

  2、本節(jié)教材是在學(xué)生已經(jīng)掌握了圓柱體積計算及其應(yīng)用和認識了圓錐的基本特征的基礎(chǔ)上學(xué)習(xí)的,是小學(xué)階段學(xué)習(xí)幾何知識的最后一課時內(nèi)容。讓學(xué)生學(xué)好這一部分內(nèi)容,有利于進一步發(fā)展學(xué)生的空間觀念,為進一步解決一些實際問題打下基礎(chǔ)。教材按照實驗、觀察、推導(dǎo)、歸納、實際應(yīng)用的程序進行安排。

  3、教學(xué)重、難點:⑴教學(xué)重點:能正確運用圓錐體積計算公式求圓錐的體積;⑵教學(xué)難點:理解圓錐體積公式的推導(dǎo)過程。

  4、教學(xué)目標:⑴知識方面:理解并掌握圓錐體積公式的推導(dǎo)過程,學(xué)會運用圓錐體積計算公式求圓錐的體積;⑵能力方面:能解決一些有關(guān)圓錐的實際問題,通過圓錐體積公式的推導(dǎo)實驗,增強學(xué)生的實踐操作能力和觀察比較能力;⑶德育方面:通過實驗,引導(dǎo)學(xué)生探索知識的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,培養(yǎng)交流與合作的團隊精神。

  5、教、學(xué)具準備:⑴教具準備:等底等高的圓柱、圓錐一對;⑵學(xué)具準備:讓學(xué)生分組制作等底等高的圓柱、圓錐若干對,準備一定量的細沙。

  二、說教法

  著名教育家布魯納說過:“教學(xué)不是把學(xué)生當成圖書館,而是要培養(yǎng)學(xué)生參與學(xué)習(xí)的過程!睂W(xué)生是學(xué)習(xí)的主體,只有通過自身的實踐、比較、思索,才能更加深刻地領(lǐng)略到知識的真諦。因此,我在設(shè)計教法時,根據(jù)本節(jié)幾何課的特點,結(jié)合小學(xué)生的認知規(guī)律,采用以下幾種教法:

  1、實驗操作法。波利亞說過:“學(xué)習(xí)任何知識的最佳途徑是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系!币虼,我在學(xué)生已經(jīng)認識圓錐的基礎(chǔ)上,設(shè)計了一個實驗:通過學(xué)生動手操作,用空圓錐盛滿沙后倒入等底等高空圓柱中,發(fā)現(xiàn)“圓錐的體積等于和它等底等高的圓柱體積的三分之一”。利用實驗法,為推導(dǎo)出圓錐的體積公式發(fā)揮橋梁和啟智的作用,有助于發(fā)展學(xué)生的空間觀念,培養(yǎng)觀察能力、思維能力和動手操作能力,為進一步學(xué)習(xí),提供了豐富的感性材料,從而逐步從具體的操作過渡到內(nèi)部語言。

  2、比較法、討論法、發(fā)現(xiàn)法三法優(yōu)化組合。幾何知識具有邏輯性、嚴密性、系統(tǒng)性的特點。因此,在做實驗時,我要求學(xué)生運用比較法、討論法、發(fā)現(xiàn)法得出結(jié)論:“圓錐的體積等于與它等底等高圓柱體積的三分之一。”然后,再讓學(xué)生討論假如這句話中去掉“等底等高”這幾個字還能否成立,并讓學(xué)生理解“等底等高”的重要意義,得出結(jié)論:不是所有的圓錐體積都是圓柱體積的三分之一,從而加深了“等底等高”這個重要的前提條件。

  三、說學(xué)法

  “人人學(xué)有價值的數(shù)學(xué),人人都能獲得必要的.數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展”是新世紀數(shù)學(xué)課程的基本理念。新課程標準還強調(diào)引導(dǎo)學(xué)生主動參與、親自實踐、獨立思考、合作探究,改變單一的記憶、接受、模仿的被動學(xué)習(xí)方式。因此,我在講求教法的同時,更重視對學(xué)生學(xué)法的指導(dǎo)。

  1、實驗轉(zhuǎn)化法

  有些知識單憑解說是無法讓學(xué)生真正理解的,只有通過實驗,才能深刻領(lǐng)悟其中的內(nèi)在奧秘。在指導(dǎo)學(xué)生進行實驗操作時,我著重從三個方面進行引導(dǎo):首先,讓學(xué)生做好操作的準備,也就是各自準備好等底等高的圓柱、圓錐一對,一定量的沙;其次,告訴他們操作的方法、步驟和注意點;第三,引導(dǎo)學(xué)生在操作中比較、發(fā)現(xiàn)、總結(jié)。這樣,通過實驗操作推導(dǎo)得出圓錐的體積公式,培養(yǎng)了學(xué)生觀察比較、交流合作、概括歸納等能力。

  2、嘗試練習(xí)法

  蘇霍姆林斯基認為:“成功的歡樂是一種巨大的情緒力量,它可以促進兒童好好學(xué)習(xí)的愿望!北竟(jié)課在學(xué)習(xí)例五時,放手讓學(xué)生嘗試自己自己去發(fā)現(xiàn)、總結(jié)、歸納,挖掘?qū)W生的潛能,讓他們體驗學(xué)習(xí)成功的樂趣,調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,發(fā)揮學(xué)生的主體作用,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  四、說教學(xué)程序

  本節(jié)課我設(shè)計了以下四個教學(xué)程序:

  1、談話導(dǎo)入

 、懦鍪緢A柱:如果想知道這個容器的容積,怎么辦?

 、瞥鍪緢A錐:如果想知道這個容器的容積,怎么辦?

  2、教學(xué)例五

 、乓龑(dǎo)觀察:這個圓柱和圓錐有什么相同的地方?

  ⑵估計一下:這個圓錐的體積是圓柱體積的幾分之幾?

  ⑶討論:可以用什么方法來驗證你的估計?

 、确纸M驗證;引導(dǎo)學(xué)生用適合的方法進行操作驗證。

 、山涣:說說自己小組是怎么驗證的,得到的結(jié)論是什么?

 、视懻:①通過實驗,我們知道這個圓錐的容積是這個圓柱容積的三分之一,那能不能說圓錐的體積就是圓柱的體積的三分之一?為什么?應(yīng)該怎么說才準確?②那怎么算出這個圓錐的容積呢?③推導(dǎo)出圓錐體積的公式(師板書)。④如果已知r和h圓錐體積公式還可以怎樣計算?如果已知d和h圓錐體積公式怎樣計算?

 、送瓿伞霸囈辉嚒。

  3、鞏固練習(xí)

  做“練一練”。

  4、歸納總結(jié)

  通過本節(jié)課你有什么收獲?有哪些問題需要我們今后注意?

數(shù)學(xué)說課稿 篇2

  一、 說教學(xué)目標

  1. 了解一元一次不等式的概念;

  2. 會解一元一次不等式。

  3 通過學(xué)習(xí)對一元一次不等式的概念及解一元一次不等式的探究過程,體會類比數(shù)學(xué)思想方法。

  4、培養(yǎng)學(xué)生理論聯(lián)系實際的思維能力及總結(jié)概括能。

  基于對數(shù)學(xué)新課程標準的理解,數(shù)學(xué)是研究數(shù)量關(guān)系和變化規(guī)律的數(shù)學(xué)模型,可以幫助學(xué)生從數(shù)量關(guān)系的角度更準確、清晰地認識、描述和把握現(xiàn)實世界,體會數(shù)學(xué)思想,發(fā)展學(xué)生的思維水平。本教材的結(jié)構(gòu)和教學(xué)內(nèi)容分析,結(jié)合七年級學(xué)生的認知結(jié)構(gòu)和心理特點,

  基于教學(xué)大綱和新課程標準的要求,本章的結(jié)構(gòu)和教學(xué)內(nèi)容分析,結(jié)合七年級學(xué)生的認知發(fā)展水平和心理特點,

  基于對學(xué)情的了解,《一元一次不等式》是人教版必修教材第 9 章第 2 課時的教學(xué)內(nèi)容。在此之前,學(xué)生們已經(jīng)學(xué)習(xí)了一元一次方程這為過渡到本課題的學(xué)習(xí)起到了鋪墊的作用。而本課題的理論、知識是學(xué)好以后課題的基礎(chǔ),它在整個教材中起著承上啟下的作用。

  綜上所述,我將本節(jié)課的教學(xué)重點確定:會解一元一次不等式。教學(xué)難點:把不等式中的未知數(shù)化為1這一步時,應(yīng)根據(jù)不等式的性質(zhì)確定不等號的方向是否改變;

  二、說教法、學(xué)法

  數(shù)學(xué)新課程標準指出,數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。數(shù)學(xué)知識相對比較抽象,學(xué)生在學(xué)習(xí)是覺得很枯燥,接受新知識會比較困難。為了激發(fā)學(xué)生學(xué)習(xí)的主動性、積極性我采用了復(fù)習(xí)導(dǎo)入法、演示法、講解法、類比法。

  三、說學(xué)法

  根據(jù)七年級學(xué)生注意力不太集中,又好動的心理特點我采用了合作討論法和自主探究法、練習(xí)法以提高學(xué)生自覺學(xué)習(xí)的習(xí)慣。

  四、說教學(xué)過程

  在本節(jié)課的教學(xué)過程中,我能夠根據(jù)學(xué)生的認知結(jié)構(gòu)和心理特點選擇合適的教學(xué)方法,激發(fā)學(xué)生學(xué)習(xí)的主動性、積極性,將新知識化難為易,提高本節(jié)課的教學(xué)效果。我主要從以下五個環(huán)節(jié)進行教學(xué)的。

  1、 回顧舊知,提出目標

  首先通過不等式的'基本性質(zhì)和一元一次方程的復(fù)習(xí)引入課題,體現(xiàn)了數(shù)學(xué)中常用的類比數(shù)學(xué)思想,既能激發(fā)學(xué)生學(xué)習(xí)的興趣,同時這種類比思想有利于提高學(xué)生的創(chuàng)造性。再讓學(xué)生通過解1道含有分母的一元一次方程,進而回顧一元一次方程的概念和解一元一次方程的步驟達到溫故知新的目的。

  2 探究新知

  在教學(xué)新課的過程中根據(jù)教材的重、難點;學(xué)生已有知識的實際現(xiàn)狀選擇合適的教法和學(xué)法并運用多媒體輔助教學(xué)以最大限度的提高教學(xué)效率。首先我設(shè)計了4道很簡單的一元一次不等式讓學(xué)生觀察其共同特點從而很順利的概括出一元一次不等式的概念;再讓學(xué)生舉幾個一元一次不等式,從而加深對一元一次不等式概念的理解;再啟發(fā)學(xué)生類比解一元一次方程的步驟探究一元一次不等式的解法和步驟,進一步比較知其聯(lián)系與區(qū)別,有利于提高學(xué)生的概括總結(jié)能力。

  3 鞏固練習(xí)

  通過學(xué)生自主合作解2個一元一次不等式,一個不含分母、不含等號,一個含有分母、含有等號。這樣由淺入深的設(shè)計讓學(xué)生更容易注意到在數(shù)軸上表示解集時若包括分界點畫實心點,若不包括分界點畫實心點。

  4、歸納小結(jié) 達標檢測

  設(shè)計一個問題 (議一議):解不等式移項時應(yīng)注意什么?系數(shù)化為1時應(yīng)注意什么?在數(shù)軸上表示解集時應(yīng)注意什么?是本節(jié)課的知識系統(tǒng)化。

  注意:解不等式移項時要變號但不改變不等號的方向;系數(shù)化為1時不等式兩邊同除以或乘負數(shù)時不等號的方向要改變;在數(shù)軸上表示解集時若包括分界點畫實心點,若不包括分界點畫空心點。

  5 作業(yè)布置

  讓學(xué)生把教材第126頁必做第1題和選做第2題寫在課堂作業(yè)本上以進一步鞏固本節(jié)課的知識。

  總之,本節(jié)課在教學(xué)時我采用的是復(fù)習(xí)導(dǎo)入法、類比數(shù)學(xué)思想方法。學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者。讓學(xué)生體會類比的數(shù)學(xué)思想方法的重要性和創(chuàng)新性。從而讓他們通過回顧和練習(xí)解一元一次方程的過程,借助類比思想探索一元一次不等式的解法,深刻體會溫故知新的成就感,進而輕松愉快的獲得新知,幫助學(xué)生認識自我,建立學(xué)習(xí)數(shù)學(xué)的信心。

數(shù)學(xué)說課稿 篇3

  各位領(lǐng)導(dǎo)、老師:大家好!:

  今天,我說課的內(nèi)容是《圓柱的體積》。我將從說教材、說學(xué)情、說教學(xué)流程三個方面進行說課。

  一、說教材。

  1.說內(nèi)容。《圓柱的體積》這節(jié)課選自冀教版六年級數(shù)學(xué)第12冊三單元,主要內(nèi)容是圓柱體的體積計算公式的推導(dǎo)和應(yīng)用。

  2.教材簡析。

  這一單元是小學(xué)階段學(xué)習(xí)幾何體知識的最后部分,是幾何知識的綜合運用!秷A柱的體積》一課,是在學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo)和長方體、正方體的體積公式的基礎(chǔ)上進行學(xué)習(xí)的,學(xué)生已經(jīng)有了把圓拼成近似的長方形的經(jīng)驗,很容易聯(lián)想到把圓柱切拼成長方體。學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實的基礎(chǔ),是后繼學(xué)習(xí)的前提。

  3、分析教材的編寫思路、結(jié)構(gòu)特點。

  為了更好地理解教材,我認真研讀了人教版與冀教版兩種不同版本的教材:

  冀教版教材:教材由過生日的情景圖和兩個不易直觀比較出體積的茶葉桶,呈現(xiàn)了問題情境。接著由“議一議”啟發(fā)學(xué)生猜想怎樣計算圓柱體積,在猜想的基礎(chǔ)上,小組合作,動手操作,利用手中的圓柱體學(xué)具把一個圓柱體等分成16份、32等份拼成新的拼成長方體。然后提出“說一說”引導(dǎo)同學(xué)觀察討論:拼成的長方體和圓柱體有什么關(guān)系?從而推導(dǎo)出圓柱體的體積計算公式。通過例題1得以簡單應(yīng)用。

  人教版教材:教材沒有創(chuàng)設(shè)生動有趣的問題情境,直接奔入主題猜想怎樣計算圓柱體積,直接引導(dǎo)學(xué)生利用手中的圓柱體學(xué)具,把一個圓柱體等分成16份、32份等新的拼成長方體。引導(dǎo)同學(xué)觀察討論:拼成的長方體和圓柱體有什么關(guān)系?從而推導(dǎo)出圓柱體的體積計算公式,出示例4鞏固應(yīng)用,出示例5應(yīng)用公式計算容積。

  通過對比分析,發(fā)現(xiàn):從教材內(nèi)容安排和活動設(shè)計上,主導(dǎo)思想是一致的,都非常重視動手操作活動,讓學(xué)生經(jīng)歷探究圓柱體積公式的全過程,在這些教學(xué)活動中,著重以引導(dǎo)學(xué)生運用自主學(xué)習(xí)、合作探究兩種學(xué)習(xí)方式交替進行,讓他們真正以課堂主人的身份參與全程,教師只是探究活動的組織者、引導(dǎo)者、合作者。不同的是為實現(xiàn)共同的教學(xué)目標引出問題的方式不同,冀教版更考慮學(xué)生年齡特點,注重學(xué)生學(xué)習(xí)興趣的激發(fā),讓學(xué)生主動的去探究。但殊途同歸,最終的學(xué)習(xí)目標是一致的。

  4.說教學(xué)目標

  基于對教材的理解和分析,我分別從知識、能力、情感與態(tài)度三方面擬定了本節(jié)課的教學(xué)目標:

 。1)知識目標:探索并掌握圓柱體積公式,能計算圓柱的體積。

  (2)能力目標:經(jīng)歷認識圓柱體積,探索圓柱體積計算公式的過程。

 。3)情感與態(tài)度目標:在探索圓柱體積的過程中,進一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。

  5、說教學(xué)重點和難點:

  結(jié)合學(xué)生的實際情況,我把教學(xué)重難點確定為:

  教學(xué)重點:掌握圓柱的體積計算公式,學(xué)會計算圓柱的體積。

  因為圓柱的體積計算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力和空間想象能力,因此,圓柱的體積公式的推導(dǎo)過程是本節(jié)課的難點。

  二、說學(xué)情。

  六年級的學(xué)生已經(jīng)習(xí)慣于進行小組合作探究式的學(xué)習(xí),具有一定的探究與合作交流的能力。他們在學(xué)習(xí)幾種多邊形面積公式及圓的面積公式推導(dǎo)過程中已經(jīng)能夠熟練地運用“割補”的方法實現(xiàn)對圖形的轉(zhuǎn)化,在學(xué)習(xí)圓的周長有關(guān)知識及圓柱的側(cè)面積時,他們也對“化曲為直”的'思想有所體會和運用,為了實現(xiàn)上述教學(xué)目標,我精心進行教學(xué)設(shè)計,引領(lǐng)學(xué)生學(xué)會運用數(shù)學(xué)的思維方式去認識世界。

  三、說教學(xué)流程。

  合理安排教學(xué)流程是教學(xué)成功的關(guān)鍵。根據(jù)六年級學(xué)生的認知水平和特點,針對教學(xué)目標,把握重點,突破難點,我設(shè)計了以下幾個步驟來完成教學(xué)。

 。ㄒ唬┛谒悖

  1、口頭答出11至20各數(shù)的平方。

  2、口頭答出3.14與一位數(shù)的積。

  這樣設(shè)計的目的除了培養(yǎng)口算習(xí)慣,提高口算能力外,還為本節(jié)課計算圓柱的體積做了充分的準備(涉及到底面積計算)。

  (二 )創(chuàng)設(shè)情境 。

  由多媒體播放生日快樂歌曲,談?wù)劼牭礁杪曄氲搅耸裁?記得爸爸、媽媽的生日嗎?然后出示亮亮和爺爺同一天過生日的情境圖,說一說發(fā)現(xiàn)了什么?想到了什么?目的是使學(xué)生了解到兩個蛋糕都是圓柱形的,爺爺?shù)纳盏案獯,就是蛋糕的體積大。初步感受認識圓柱的體積,同時進行情感教育。

  然后拿出兩個不易直觀比較出體積大小的茶葉桶,提出:你能說出哪個茶葉桶的體積大嗎?用眼睛無法看出哪個茶葉筒的體積大,能不能想個辦法比較兩個茶葉桶體積的大。繌亩箤W(xué)生感受到學(xué)會計算圓柱體積的必要性。

  設(shè)計意圖:這樣通過親切、自然的課前交流,使學(xué)感受到數(shù)學(xué)就在我們身邊,給學(xué)生營造一種輕松愉快的學(xué)習(xí)氛圍,激發(fā)起學(xué)生的探究欲望,從而引出新課。

 。ㄈ、自學(xué)。

  首先提出怎樣求圓柱的體積呢?聯(lián)系以前學(xué)過的知識大膽猜一猜,想一想該怎樣推導(dǎo)圓柱的體積公式呢?引導(dǎo)學(xué)生回憶圓的面積公式的推導(dǎo)過程并用課件展示,同時聯(lián)想長方體的體積等于底面積乘高,學(xué)生可能會猜出把圓柱轉(zhuǎn)化為學(xué)過的長方體來計算。

  猜得對不對呢?接著學(xué)生小組合作,動手實驗,利用手中的圓柱體學(xué)具把一個圓柱體等分成16份拼成一個近似的長方體。引導(dǎo)學(xué)生觀察思考:拼成的長方體和圓柱體有什么關(guān)系?你們發(fā)現(xiàn)了什么?小組討論。給學(xué)生充分的時間和空間進行組內(nèi)交流,得出結(jié)論。

  設(shè)計意圖:通過學(xué)生的合理猜想,獨立操作,仔細觀察,集體討論,交流總結(jié),學(xué)會用轉(zhuǎn)化的思想解決數(shù)學(xué)問題 。

  (四)、展示。

  首先每個小組派代表到前面展示學(xué)習(xí)成果,得出將圓柱體等分成16份可以拼成一個近似的長方體:近似長方體的底面就是圓柱的底面積;近似長方體的高就是圓柱的高;近似長方體的體積就是圓柱的體積,其他小組補充,質(zhì)疑,從而歸納推導(dǎo)出圓柱的體積=底面積×高,用字母表示V=Sh。

  最后教師再用多媒體課件演示將圓柱體等分成16份再重新組合,看看可以得出一個什么樣的立體圖形?印證學(xué)生的結(jié)論。

  設(shè)計意圖:讓知識在觀察、操作、比較中內(nèi)化,實現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法符合學(xué)生的認知規(guī)律,有助于突破重點,化解難點。獲得自主學(xué)習(xí)的快感。

  (五)自學(xué)并展示2。

  出示例1:一根圓柱形鋼材,底面積是50平方厘米,高是1.5米。它的體積是多少立方厘米?先由學(xué)生讀題自己獨立完成,請一位學(xué)生到前面用展臺展示,戰(zhàn)士時重點提問學(xué)生,在解題時要注意什么?讓學(xué)生自己來概括總結(jié)出:(1)單位要統(tǒng)一(2)求出的是體積,要用體積單位。

  設(shè)計意圖:在掌握了圓柱體積計算的方法之后,安排例1進行嘗試練習(xí),這樣既可以調(diào)動學(xué)生的學(xué)習(xí)積極性和主動性,又可以培養(yǎng)學(xué)生學(xué)習(xí)新知識的能力,同時把所學(xué)知識轉(zhuǎn)化為相應(yīng)的技能。

 。、反饋。

  第一層次:練一練1題:直接給出底面積和高,獨立計算各圓柱的體。目的是讓學(xué)生進一步理解鞏固圓柱的體積公式。

  第二層次:課件出示:口答求下列各圓柱體的體積(只列算式不計算)。

 。1)底面圓的半徑是3厘米,高4厘米。

 。2)底面圓的直徑是6分米,高是8分米。

 。3)底面圓的周長是12.56厘米,高是6厘米。

  第三層次:練習(xí)第2題。作業(yè)本上完成。方鋼長50厘米,底面邊長12厘米,鍛造成底面為90平方厘米的圓柱體,求長?優(yōu)等生再完成:用一個棱長是6分米的正方體,做一個最大的圓柱,圓柱的體積是多少?是兩道變形題,通過反饋,鞏固新知識,加深對新知識的理解,把所學(xué)知識進一步轉(zhuǎn)化為能力,在練習(xí)中發(fā)展智力,培養(yǎng)優(yōu)良的思維品質(zhì)和學(xué)習(xí)習(xí)慣。

  (七)總結(jié)全課,深化教學(xué)目標

  結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我是這樣設(shè)計的:這節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?圓柱體積的計算公式是怎樣推導(dǎo)出來的?你有什么收獲?

  目的在于讓學(xué)生懂得新知識的得來是通過已學(xué)的知識來解決的,希望同學(xué)們多動腦,勤思考,生活中有許多問題需要利用所學(xué)知識來解決,望同學(xué)們能學(xué)會運用,善于用轉(zhuǎn)化的思想來豐富自己的頭腦,思考問題。

  板書設(shè)計: 圓柱的體積

  長方體的體積=(長×寬)×高

  ↓ ↓ ↓

  圓柱體的體積=底面積 × 高

  ↓ ↓

  V = S * h

  回顧反思整個教學(xué)過程,主要體現(xiàn)如下設(shè)計理念: 情境生活化:通過情境的創(chuàng)設(shè),以求圓柱的體積為主線,在學(xué)生熟悉喜愛的生活情境中探索數(shù)學(xué)問題。 學(xué)習(xí)自主化:通過學(xué)生的動手操作,仔細觀察,說一說,辨一辨,突破教學(xué)的重難點。為凸現(xiàn)這一學(xué)習(xí)過程,我給予學(xué)生更多的空間,學(xué)生在相互的碰撞和交流中發(fā)現(xiàn)圓柱的體積計算方法同時提高學(xué)生自主學(xué)習(xí)能力。在圓滿的同時,我也覺得會有一些可能出現(xiàn)問題的地方:比如,在具體的運用和實踐中一定要注意和圓柱的側(cè)面積加以區(qū)別,這一點我在實際的教學(xué)中會多加以指導(dǎo)和訓(xùn)練。

  以上是我的說課過程,請各位領(lǐng)導(dǎo),老師提出寶貴的意見 。謝謝!

數(shù)學(xué)說課稿 篇4

  今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時:《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個方面對本課的教學(xué)設(shè)計進行說明。

  一、說教材

  1、本節(jié)在教材中的地位和作用:

  本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識,同時培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達爾文說:“最有價值的知識是關(guān)于方法和能力的知識”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。

  2. 教學(xué)目標確定:

  (1)能力訓(xùn)練要求

  ①使學(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點、高的概念。

 、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

  (2)德育滲透目標

 、倥囵B(yǎng)學(xué)生善于通過觀察分析實物形狀到歸納其性質(zhì)的能力。

 、谔岣邔W(xué)生對事物的感性認識到理性認識的能力。

 、叟囵B(yǎng)學(xué)生“理論源于實踐,用于實踐”的觀點。

  3. 教學(xué)重點、難點確定:

  重 點:1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

  難 點:培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。

  二、說教學(xué)方法和手段

  1、教法:

  “以學(xué)生參與為標志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。

  在教學(xué)中根據(jù)高中生心理特點和教學(xué)進度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。

  2、教學(xué)手段:

  根據(jù)《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節(jié)課概念性強,思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。

  三、說學(xué)法:

  這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認知結(jié)構(gòu)。

  四、 學(xué)程序:

  [復(fù)習(xí)引入新課]

  1.棱柱的性質(zhì):(1)側(cè)棱都相等,側(cè)面是平行四邊形

  (2)兩個底面與平行于底面的截面是全等的多邊形

  (3)過不相鄰的兩條側(cè)棱的`截面是平行四邊形

  2.幾個重要的四棱柱:平行六面體、直平行六面體、長方體、正方體

  思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?

  [講授新課]

  1、棱錐的基本概念

  (1).棱錐及其底面、側(cè)面、側(cè)棱、頂點、高、對角面的概念

  (2).棱錐的表示方法、分類

  2、棱錐的性質(zhì)

  (1). 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

  證明:(略)

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

  的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

  (2).正棱錐的定義及基本性質(zhì):

  正棱錐的定義:①底面是正多邊形

 、陧旤c在底面的射影是底面的中心

 、俑鱾(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

 、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;

  棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形

  引申: ①正棱錐的側(cè)棱與底面所成的角都相等;

 、谡忮F的側(cè)面與底面所成的二面角相等;

  (3)正棱錐的各元素間的關(guān)系

  下面我們結(jié)合圖形,進一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。

  引申:

 、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點?

  (可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)

 、谌舴謩e假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請試通過三角形得出以上各元素間的關(guān)系式。

  (課后思考題)

  [例題分析]

  例1.若一個正棱錐每一個側(cè)面的頂角都是600,則這個棱錐一定不是( )

  A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

  (答案:D)

  例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點且平行于底面的截面△A’B’C’的面積。

  解析及圖略

  例3.已知正四棱錐的棱長和底面邊長均為a,求:

  (1)側(cè)面與底面所成角α的余弦(2)相鄰兩個側(cè)面所成角β的余弦

  解析及圖略

  【課堂練習(xí)】

  1、 知一個正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。

  解析及圖略

  2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。

  解析及圖略

  【課堂小結(jié)】

  一:棱錐的基本概念及表示、分類

  二:棱錐的性質(zhì)

  1. 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

  2.正棱錐的定義及基本性質(zhì)

  正棱錐的定義:①底面是正多邊形

 、陧旤c在底面的射影是底面的中心

  (1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高

  相等,它們叫做正棱錐的斜高;

  (2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形

  引申: ①正棱錐的側(cè)棱與底面所成的角都相等;

  ②正棱錐的側(cè)面與底面所成的二面角相等;

 、壅忮F中各元素間的關(guān)系

  【課后作業(yè)】

  1:課本P52 習(xí)題9.8 : 2、 4

  2:課時訓(xùn)練:訓(xùn)練一

數(shù)學(xué)說課稿 篇5

  一、教學(xué)目標:

  1、使學(xué)生理解多項式中同類項的概念,會識別同類項。

  2、使學(xué)生掌握合并同類項法則,能進行同類項的合并。

  3、通過觀察、比較交流了解教學(xué)的分類思想,并能準確判斷出同類項。并熟練運用法則進行合并同類項的運算。

  4、激發(fā)學(xué)生的求知欲,培養(yǎng)獨立思考和合作交流的能力,讓他們享受成功的喜悅。

  二、教學(xué)重難點:

  重點:同類項的概念、合并同類項的法則及應(yīng)用。

  難點:正確判斷同類項;準確合并同類項。

  三、教學(xué)方法:

  引導(dǎo)、探究式教學(xué)、合作、交流、觀察、練習(xí)、

  四、教學(xué)過程:

  (一)情景導(dǎo)入:

  1、作為農(nóng)村學(xué)生,我們都知道自己家的菜園里會把西紅柿、黃瓜、茄子、蔥分別栽培在一起,為何不把它們交叉種植呢?

  再如,在小學(xué)時,老師會讓我們把水果和非水果進行分類,生活中處處有分類問題,在教學(xué)中我們也會遇到一種分類問題,今天我們就共同來學(xué)習(xí)。

  根據(jù)下列單項式的特征試將其分類:

  8n、 -7ab、3ab、2ab、6xy、5n、-3xy、-ab、

  2、形成概念:

  以上式子歸為同類需要有什么共同的特征?(引導(dǎo)學(xué)生看書,讓學(xué)生理解同類項的定義)

  概念:所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。

  注意:(1)同類項與系數(shù)無關(guān),與字母的排列順序也無關(guān)

  (2)幾個常數(shù)項也是同類項。

  (二)強化練習(xí):

  1、思考:下列各組中的兩項是不是同類項?為什么?

  (1)ab與3ab; (2)2a b與2ab ;(3)3xy與- xy;

  (4)2a與2ab (5)-2.1與 ; (6)5與b ;

  2、請同學(xué)們思考下面的問題?

  3ab+5ab=_______理由是________

  -4xy2+2xy2=_______ 理由是_______

  -3a+2b= 理由是_______

  3、不在一起的同類項能否將同類項結(jié)合在一起?為什么?

  例如:試化簡多項式3x y-4xy -3+5x y+2xy +5

  解:3x y-4xy -3+5x y+2xy +5--------------找出

  (用不同的標志把同類項標出來!)

  =3x y+5x y-4xy +2xy -3+5 ----------加法交換律

  =(3x y+5x y)+(-4xy +2xy )+(-3+5)--加法結(jié)合律

  =(3+5)x y+(-4+2)xy +2 ---------乘法分配律逆用

  =8 x y-2 xy +2 ----------合并

  探討:

  合并同類項后,所得項的系數(shù)、字母以及字母的指數(shù)與合并前各同類項的系數(shù)、字母及字母的指數(shù)有什么聯(lián)系?

  (三)例題講解

  例:合并下列各式中的同類項:

  1).2a b-3a b+ a b 2).2a b+2ab +a b-ab

  3).6a -5b +2ab+b -6a

  解:1).2a b-3a b+ a b=(2-3+ )a b=- a b

  方法是:(1)系數(shù):各項系數(shù)相加作為新的系數(shù)。

  (2)字母以及字母的'指數(shù)不變。

  2).-2a b+2ab +a b-ab --------------找出

  =-2a b+a b+2ab -ab ----------加法交換律

  =(-2a b+a b)+(2ab -ab)--加法結(jié)合律

  =(-2+1)a b +(2-1)ab ---------乘法分配律逆用

  = -a b+ ab ----------合并

  3).6a -5b +2ab+b -6a

  =(6a -6a )+(-5b +b )+2ab-------沒有同類項照抄下來

  =-4 b +2ab

  思考:合并同類項的步驟是怎樣?

  (四)鞏固練習(xí)

  1、嘗試訓(xùn)練:(1)3x +x ; (2)xy - xy ;

  (3)4a+3b+2ab-4a-4b

  2、請你完成:

  (1) 3x-8x-9x (2) 5a2+2ab-4a2-4ab

  (3) 2x-7y-5x+11y-1

  3、知識延伸:

  已知 與 是同類項,求m.n的值。

  4.如果2abn+1與-4amb是同類項,則m=____,n=____;

  5.若5xy+axy=-2xy,則a=___;

  6.在6xy-3x-4xy-5yx+x中沒有同類項的項是______

  (五)課堂小結(jié):

  談一談:通過這節(jié)課的學(xué)習(xí)你學(xué)到了什么?

  相同字母的指數(shù)一樣

  所含字母一樣

  ②交換律

 、劢Y(jié)合律

 、芊峙渎

  ①找出

  A.系數(shù)相加減;

  B.字母和字母的指數(shù)不變。

 、莺喜ⅲ

  合并

  法則

  要點

  (六)布置作業(yè)

  1、在下列代數(shù)式中,指出哪些是同類項。

  2x2 ,0 ,-3x ,-x2y ,(x+y)2 ,xy2, x2y ,6x ,

  -x2y , 0.5 , -x2 ,2(x+y)2 ;

  2、合并同類項

 、3y+2y ②3b-3a3+1+a3-2b

 、2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2

  3、填空:

  (1)在( )內(nèi)填上相應(yīng)字母,使得2( )3( )2與5x2y3是同類項;

  (2)若x3ym和xny2是同類項,則 = ;

  (3)若(n-3)x2yz和x2yz是同類項,則 ;

數(shù)學(xué)說課稿 篇6

各位評委、各位老師:

  大家好!我是來自錢場中學(xué)的陳芬老師。我說課的內(nèi)容是人教版義務(wù)教育課程標準實驗教科書,七年級數(shù)學(xué)(下)第七章第三節(jié)《多邊形的內(nèi)角和》。

  下面,我從以下幾個方面對本節(jié)課的教學(xué)設(shè)計進行說明。

  一、教材分析

  1、教材的地位和作用

  本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,再將內(nèi)角和公式應(yīng)用于平面鑲嵌,環(huán)環(huán)相扣,層層遞進,這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的認知特點。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會從簡單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

  2、教學(xué)重點和難點

  重點:多邊形的內(nèi)角和與外角和

  難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。

  二、教學(xué)目標分析

  1、知識與技能:掌握多邊形的內(nèi)角和與外角和,進一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

  2、數(shù)學(xué)思考:能感受數(shù)學(xué)思考過程的條理性,發(fā)展能力推理和語言表達能力,并體會從特殊到一般的認識問題的方法。

  3、解決問題:讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題。

  4、情感態(tài)度:讓學(xué)生體驗猜想得到證實的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗數(shù)學(xué)充滿探索和創(chuàng)造。

  三、教法和學(xué)法分析

  本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間”的思想,我確定如下教法和學(xué)法:

  1、教學(xué)方法的設(shè)計

  我采用了探究式教學(xué)方法,整個探究學(xué)習(xí)的過程充滿了師生之間,生生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。

  2、活動的開展

  利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

  3、現(xiàn)代教育技術(shù)的應(yīng)用

  我利用課件輔助教學(xué),適時呈現(xiàn)問題情景,以豐富學(xué)生的感性認識,增強直觀效果,提高課堂效率。

  四、教學(xué)過程分析

  1、本節(jié)教學(xué)將按以下六個流程展開

  2、教學(xué)過程

  互動環(huán)節(jié)互動內(nèi)容設(shè)計意圖

  1、創(chuàng)設(shè)情境

  引入新課

 。1)在一次數(shù)學(xué)基礎(chǔ)知識搶答賽上,王老師出了這么一個問題:某個多邊形所有的角加起來等于它的外角和,那么該多邊形是幾邊形?小明同學(xué)僅用幾秒鐘就解決了問題,你能嗎?

 。2)(演示教具)用四塊大小形狀完全相同的四邊形可拼成一塊無空隙的紙板,你知道這是為什么嗎?

  通過今天的學(xué)習(xí),我們就能明白其中的道理,引出課題。

  這樣一開始就利用搶答賽問題以及教具演示實驗來提問設(shè)疑,學(xué)生很容易發(fā)問:這個多邊形是幾邊形呢?用四塊大小形狀完全相同的四邊形可拼成一塊無空隙的紙板,為什么會產(chǎn)生這種效果呢?從而可調(diào)動學(xué)生的學(xué)習(xí)興趣和注意力,創(chuàng)設(shè)恰當?shù)慕虒W(xué)情境。

  2、合作交流

  探索新知

  (1)問題:三角形的`內(nèi)角和等于多少度?外角和等于多少度?長方形的內(nèi)角和等于多少度?正方形的內(nèi)角和等于多少度?

 。2)問題:任意四邊形的內(nèi)角和等于多少度呢?你是怎樣得到的?你能找到幾種方法?

 。3)學(xué)生思考,并分組交流討論,教師深入小組參與活動,指導(dǎo)、傾聽學(xué)生交流。

  (4)學(xué)生分組選代表展示小組的探索成果,師生共同進行評判,對學(xué)生找到的不同方法要加以及時肯定。

  學(xué)生可能找到以下幾種方法:

  ①“量”—即先測量四邊形四個內(nèi)角的度數(shù),然后求四個內(nèi)角的和;

 、凇捌础薄窗阉倪呅蔚乃膫內(nèi)角剪下來,拼在一起,得到一個周角;

 、邸胺帧薄赐ㄟ^添加輔助線的方法,把四邊形分割成三角形。

  教師在學(xué)生展示完后提問:

 、僭凇傲俊、“拼”、“分”這幾種方法中,哪種方法操作簡單又相對準確?

 、谖覀儎偛耪业搅藥追N不同的輔助線的作法,它們的共同點是什么?先回顧三角形、正方形和長方形的內(nèi)角和,促使學(xué)生對新問題進行思考與猜想。

  從簡單的四邊形入手,讓學(xué)生親自操作尋求結(jié)論,易于引起學(xué)習(xí)興趣,鼓勵學(xué)生找到多種方法,讓學(xué)生體會多種分割形式,有利于深入領(lǐng)會轉(zhuǎn)化的本質(zhì)——四邊形轉(zhuǎn)化為三角形,也讓學(xué)生體驗數(shù)學(xué)活動充滿探索和解決問題方法的多樣性。

  通過交流,讓學(xué)生用自己的語言清楚地表達解決問題的過程,可以提高語言表達能力。

  3、自主探究

  得出結(jié)論(1)問題:用剛才類似的方法,你能算出五邊形、六邊形、七邊形的內(nèi)角和嗎?

  學(xué)生先獨立思考,分組討論,然后再敘述結(jié)論。

  (2)問題:依此類推,n邊形的內(nèi)角和等于多少度呢?

  讓學(xué)生自己歸納總結(jié),得出n邊形的內(nèi)角和公式為(n—2)180°。

  從探索四邊形的內(nèi)角和,到五邊形、六邊形、七邊形乃至n邊形,通過增強圖形的復(fù)雜性,讓學(xué)生體會由簡單到復(fù)雜,由特殊到一般的思想方法,再一次經(jīng)歷轉(zhuǎn)化的過程,同時在分組交流的過程中,感受合作的重要性。

  互動環(huán)節(jié)互動內(nèi)容設(shè)計意圖

  4、應(yīng)用新知

  嘗試練習(xí)(1)想一想:

  如果一個四邊形的一組對角互補,那么另一組對角有什么關(guān)系?為什么(教材88頁例1)。

 。2)算一算

  ①教材89頁練習(xí)1、2。

 、谒倪呅蔚耐饨呛偷扔诙嗌俣?

 、畚暹呅蔚耐饨呛,六邊形以及n邊形的外角和呢?

 。3)讀一讀

  先讓學(xué)生閱讀教材89頁最后兩段內(nèi)容,然后我再用課件展示。

  通過做例題和練習(xí)來鞏固新知識。

  先求四邊形的外角和,再求五邊形、六邊形以及n邊形的外角和,我提出階梯式的問題,讓學(xué)生逐步歸納得出多邊形的外角和等于360°。

  這兩段是新增加的內(nèi)容,從另一個角度增加對任意多邊形外角和理解與認識。這樣處理,注重教材閱讀學(xué)習(xí),同時用課件演示更加形象直觀,便于理解。

  5、歸納總結(jié)

  形成體系

  我從以下幾個方面引導(dǎo)學(xué)生進行小結(jié):

  (1)現(xiàn)在你能解決數(shù)學(xué)知識搶答賽上,王老師提出的問題了嗎?你知道為什么能用四塊大小形狀完全相同的四邊形拼成一塊無空隙的紙板了嗎?

 。2)這節(jié)課我們學(xué)習(xí)了哪些知識和方法?你有什么收獲?

  讓學(xué)生運用所學(xué)知識解決引問中的問題,提高解決問題的能力,鼓勵學(xué)生暢所欲言總結(jié)對本節(jié)課的收獲和體會,有利于培養(yǎng)歸納、總結(jié)的習(xí)慣和能力,讓學(xué)生自主建構(gòu)知識體系。

  6、分組競賽

  升華情感我制作了A、B、c、D四組不同的電子試卷,讓學(xué)生運用所學(xué)知識通過小組競賽的形式合作完成,自檢掌握情況。通過競賽的方式,激發(fā)學(xué)生的學(xué)習(xí)興趣,引導(dǎo)他們在做練習(xí)的過程中,通過小組協(xié)作來鞏固知識和獲得技能。

  在每組試卷中,大部分選自教材的練習(xí)題。另外,我還另增加了1個思考題,實際上是對證明四邊形內(nèi)角和方法的補充,主要是通過一題多解發(fā)散思維,提高思維的靈活性,還可以復(fù)習(xí)舊知識,把握知識間的相互聯(lián)系,讓學(xué)生再次體會轉(zhuǎn)化的思想方法。

  五、評價分析

  1、注意評價內(nèi)容的多元化

  通過課堂中學(xué)生展示自己對所學(xué)內(nèi)容的理解,交流對某一問題的看法,動手操作的表演,各種問題嘗試解答等活動,使教師從學(xué)生思維活動、有關(guān)內(nèi)容的理解和掌握,以及學(xué)生參與活動的程序等多層面地了解學(xué)生。

  2、注重對學(xué)生學(xué)習(xí)過程的評價

  在整個教學(xué)過程中,通過對學(xué)生參與數(shù)學(xué)活動的程度、自信心、合作交流的意識以及獨立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進行評價,并對學(xué)生中出現(xiàn)的獨特的想法或結(jié)論給予鼓勵性評價。

  六、設(shè)計說明

  1、指導(dǎo)思想

  根據(jù)義務(wù)教育階段數(shù)學(xué)課程的要求,結(jié)合教材的編寫意圖,在本節(jié)課設(shè)計時,我遵循以下原則:情境引入激發(fā)興趣,學(xué)習(xí)過程體現(xiàn)自主,知識建構(gòu)循序漸進,思想方法有機滲透。

  2、關(guān)于教材處理

  本教案設(shè)計時,我對教材作了如下改變:

 、賹⒔滩睦1作為練習(xí)中的“想一想”,由學(xué)生自已嘗試解答;

  ②將例2中的求“六邊形”的外角和,改為練習(xí)中的“算一算”,先讓學(xué)生求“四邊形”的外角和,再探索“五邊形、六邊形,以及n邊形的外角和”。這樣處理仍然是為了體現(xiàn)學(xué)生的自主探索,使學(xué)生學(xué)習(xí)變“被動”為“主動”。

 、圩鳂I(yè)采取分組競賽的形式合作完成。這樣,在情感上,本節(jié)課學(xué)生由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學(xué)習(xí)激情。這時,一次有效的教學(xué)競賽活動,使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個性得以張揚,教師可稍加點撥,適可而止,把更多的思考空間留給學(xué)生。

  以上是我對本節(jié)課的設(shè)計說明,不足之處,請各位指正,謝謝!

【數(shù)學(xué)說課稿】相關(guān)文章:

數(shù)學(xué)說課稿01-23

《數(shù)學(xué)廣角》說課稿01-15

《數(shù)學(xué)樂園》說課稿04-03

數(shù)學(xué)說課稿(經(jīng)典)06-09

《數(shù)學(xué)廣角》說課稿03-01

小學(xué)數(shù)學(xué)的說課稿07-20

數(shù)學(xué)溫度說課稿10-23

數(shù)學(xué)廣角說課稿08-09

數(shù)學(xué)樂園說課稿10-02

《數(shù)學(xué)廣角——》說課稿06-20