日韩经典一区,日韩a免费,国产欧美一区二区三区观看,日韩一区国产二区欧美三,精品日韩欧美一区二区三区在线播放,国产免费一级视频,日韩国产一区二区

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2025-04-13 08:00:34 知識(shí)點(diǎn)總結(jié) 我要投稿

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)匯總(15篇)

  總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而肯定成績(jī),得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,他能夠提升我們的書面表達(dá)能力,因此好好準(zhǔn)備一份總結(jié)吧。那么如何把總結(jié)寫出新花樣呢?下面是小編精心整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)匯總(15篇)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  一、重要概念

  1.總體:考察對(duì)象的全體。

  2.個(gè)體:總體中每一個(gè)考察對(duì)象。

  3.樣本:從總體中抽出的一部分個(gè)體。

  4.樣本容量:樣本中個(gè)體的數(shù)目。

  5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。

  6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個(gè)數(shù)(或最中間位置的兩個(gè)數(shù)據(jù)的平均數(shù))

  二、計(jì)算方法

  1.樣本平均數(shù):⑴;⑵若,…,,則(a—常數(shù),…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(shì)(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計(jì)總體平均數(shù),樣本容量越大,估計(jì)越準(zhǔn)確。

  2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數(shù)的較“整”的常數(shù));若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動(dòng)大小)的特征數(shù),當(dāng)樣本容量較大時(shí),樣本方差非常接近總體方差,通常用樣本方差去估計(jì)總體方差。

  3.樣本標(biāo)準(zhǔn)差:

  三、應(yīng)用舉例(略)

  初三數(shù)學(xué)知識(shí)點(diǎn):第四章直線形

  ★重點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

  ☆內(nèi)容提要☆

  一、直線、相交線、平行線

  1.線段、射線、直線三者的區(qū)別與聯(lián)系

  從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。

  2.線段的中點(diǎn)及表示

  3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

  4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)

  5.角(平角、周角、直角、銳角、鈍角)

  6.互為余角、互為補(bǔ)角及表示方法

  7.角的平分線及其表示

  8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

  9.對(duì)頂角及性質(zhì)

  10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

  11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

  12.定義、命題、命題的組成

  13.公理、定理

  14.逆命題

  二、三角形

  分類:⑴按邊分;

  ⑵按角分

  1.定義(包括內(nèi)、外角)

  2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中

  3.三角形的'主要線段

  討論:①定義②x線的交點(diǎn)—三角形的×心③性質(zhì)

  ①高線②中線③角平分線④中垂線⑤中位線

 、乓话闳切微铺厥馊切危褐苯侨切巍⒌妊切、等邊三角形

  4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

  5.全等三角形

 、乓话闳切稳鹊呐卸(sas、asa、aas、sss)

 、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒

  6.三角形的面積

 、乓话阌(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。

  7.重要輔助線

 、胖悬c(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

  8.證明方法

 、胖苯幼C法:綜合法、分析法

 、崎g接證法—反證法:①反設(shè)②歸謬③結(jié)論

 、亲C線段相等、角相等常通過(guò)證三角形全等

 、茸C線段倍分關(guān)系:加倍法、折半法

 、勺C線段和差關(guān)系:延結(jié)法、截余法

 、首C面積關(guān)系:將面積表示出來(lái)

  三、四邊形

  分類表:

  1.一般性質(zhì)(角)

  ⑴內(nèi)角和:360°

 、祈槾芜B結(jié)各邊中點(diǎn)得平行四邊形。

  推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。

  推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。

 、峭饨呛停360°

  2.特殊四邊形

 、叛芯克鼈兊囊话惴椒:

  ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

  ⑶判定步驟:四邊形→平行四邊形→矩形→正方形

  ┗→菱形——↑

 、葘(duì)角線的紐帶作用:

  3.對(duì)稱圖形

 、泡S對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))

  4.有關(guān)定理:①平行線等分線段定理及其推論1、2

 、谌切、梯形的中位線定理

 、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)

  5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中!捌揭埔谎、“平移對(duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。

  6.作圖:任意等分線段。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  1.常量和變量

  在某變化過(guò)程中可以取不同數(shù)值的量,叫做變量.在某變化過(guò)程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

  2.函數(shù)

  設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x在某一范圍的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).

  3.自變量的取值范圍

  (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

  (3)偶次方根:被開(kāi)方數(shù)為非負(fù)數(shù).

  (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

  4.函數(shù)值

  對(duì)于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值,叫做x=a時(shí)的函數(shù)值.

  5.函數(shù)的表示法

  (1)解析法;(2)列表法;(3)圖象法.

  6.函數(shù)的圖象

  把自變量x的一個(gè)值和函數(shù)y的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

  (1)寫出函數(shù)解析式及自變量的取值范圍;

  (2)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值;

  (3)描點(diǎn):以表中對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

  (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來(lái).

  7.一次函數(shù)

  (1)一次函數(shù)

  如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

  特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).

  (2)一次函數(shù)的圖象

  一次函數(shù)y=kx+b的圖象是一條經(jīng)過(guò)(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過(guò)原點(diǎn)的直線.需要說(shuō)明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.

  (3)一次函數(shù)的性質(zhì)

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

  (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

 、偃魏我辉淮畏匠潭伎梢赞D(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

 、诙淮畏匠探M對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).

  ③任何一元一次不等式都可以轉(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.

  8.反比例函數(shù)(1)反比例函數(shù)

  (1)如果(k是常數(shù),k≠0),那么y叫做x的.反比例函數(shù).

  (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

  (3)反比例函數(shù)的性質(zhì)

 、佼(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減。

 、诋(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

 、鄯幢壤瘮(shù)圖象關(guān)于直線y=±x對(duì)稱,關(guān)于原點(diǎn)對(duì)稱.

  (4)k的兩種求法

 、偃酎c(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

  若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

  (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問(wèn)題

  若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無(wú)交點(diǎn);

  當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱.

  1.二次函數(shù)

  如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

  幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

  2.二次函數(shù)的圖象

  二次函數(shù)y=ax2+bx+c的圖象是對(duì)稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過(guò)平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

  3.二次函數(shù)的性質(zhì)

  二次函數(shù)y=ax2+bx+c的性質(zhì)對(duì)應(yīng)在它的圖象上,有如下性質(zhì):

  (1)拋物線y=ax2+bx+c的頂點(diǎn)是,對(duì)稱軸是直線,頂點(diǎn)必在對(duì)稱軸上;

  (2)若a>0,拋物線y=ax2+bx+c的開(kāi)口向上,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開(kāi)口向下,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減;當(dāng)x=時(shí),y有最大值;

  (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

  (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

 。0時(shí),拋物線y=ax2+bx+c與x軸沒(méi)有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

  拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來(lái)決定.

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  1.平方差公式:平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  2.完全平方:完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。

  3.一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)、合并好,再把系數(shù)來(lái)除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。

  4. 一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無(wú)處找。

  5.一元二次不等式、一元一次絕對(duì)值不等式的解集:大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。

  6.分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。

  7.分式方程的解法步驟:同乘最簡(jiǎn)公分母,化成整式寫清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。

  8.最簡(jiǎn)根式的條件:最簡(jiǎn)根式三條件,號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。

  9.特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。

  10.象限角的平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。

  11.平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。

  12.對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反, Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱記,橫縱坐標(biāo)變符號(hào)。

  13.自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。

  14.函數(shù)圖像的移動(dòng)規(guī)律: 若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。

  15.巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開(kāi),再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚(yú),說(shuō)了這么一句話:正對(duì)魚(yú)磷(余鄰)直刀切。正:正弦或正切,對(duì):對(duì)邊即正是對(duì);余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

  初三數(shù)學(xué)上冊(cè)期末知識(shí)點(diǎn)歸納

  單項(xiàng)式與多項(xiàng)式

  僅含有一些數(shù)和字母的乘法(包括乘方)運(yùn)算的式子叫做單項(xiàng)式單獨(dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。

  單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式(或字母因數(shù))的數(shù)字系數(shù),簡(jiǎn)稱系數(shù)。

  當(dāng)一個(gè)單項(xiàng)式的系數(shù)是1或-1時(shí),“1”通常省略不寫。

  一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。

  如果在幾個(gè)單項(xiàng)式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個(gè)單項(xiàng)式就叫做同類單項(xiàng)式,簡(jiǎn)稱同類項(xiàng)所有的常數(shù)都是同類項(xiàng)。

  1、多項(xiàng)式

  有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。

  多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。

  單項(xiàng)式可以看作是多項(xiàng)式的特例

  把同類單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。

  在多項(xiàng)式中,所含的不同未知數(shù)的個(gè)數(shù),稱做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過(guò)合并同類項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱為這個(gè)多項(xiàng)式的次數(shù)。

  2、多項(xiàng)式的值

  任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來(lái)的式子。

  3、多項(xiàng)式的恒等

  對(duì)于兩個(gè)一元多項(xiàng)式f(x)、g(x)來(lái)說(shuō),當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即f(a)=g(a),那么,這兩個(gè)多項(xiàng)式就稱為是恒等的記為f(x)==g(x),或簡(jiǎn)記為f(x)=g(x)。

  性質(zhì)1如果f(x)==g(x),那么,對(duì)于任一個(gè)數(shù)值a,都有f(a)=g(a)。

  性質(zhì)2如果f(x)==g(x),那么,這兩個(gè)多項(xiàng)式的個(gè)同類項(xiàng)系數(shù)就一定對(duì)應(yīng)相等。

  4、一元多項(xiàng)式的根

  一般地,能夠使多項(xiàng)式f(x)的值等于0的未知數(shù)x的值,叫做多項(xiàng)式f(x)的根。

  多項(xiàng)式的加、減法,乘法

  1、多項(xiàng)式的加、減法

  2、多項(xiàng)式的乘法

  單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對(duì)于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。

  3、多項(xiàng)式的乘法

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。

  常用乘法公式

  公式I平方差公式

  (a+b)(a-b)=a^2-b^2

  兩個(gè)數(shù)的和與這兩個(gè)數(shù)的`差的積等于這兩個(gè)數(shù)的平方差。

  關(guān)于數(shù)學(xué)常見(jiàn)誤區(qū)有哪些

  1、被動(dòng)學(xué)習(xí)

  許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門道”,沒(méi)有真正理解所學(xué)內(nèi)容。

  2、學(xué)不得法

  老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、不重視基礎(chǔ)

  一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。

  4、進(jìn)一步學(xué)習(xí)條件不具備

  高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。

  如二次函數(shù)在閉區(qū)間上的最值問(wèn)題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問(wèn)題等?陀^上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。

  如何整理數(shù)學(xué)學(xué)科課堂筆記

  一、內(nèi)容提綱。老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。

  二、疑難問(wèn)題。將課堂上未聽(tīng)懂的問(wèn)題及時(shí)記下來(lái),便于課后請(qǐng)教同學(xué)或老師,把問(wèn)題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問(wèn)題對(duì)部分學(xué)生來(lái)說(shuō),是屬于疑難問(wèn)題,由于課堂上來(lái)不及思考成熟,記下疑難問(wèn)題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。

  三、思路方法。對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來(lái)后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開(kāi)闊視野,開(kāi)發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。

  四、歸納總結(jié)。注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。

  五、錯(cuò)誤反思。學(xué)習(xí)過(guò)程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。

  數(shù)學(xué)常用解題技巧有哪些

  第一,應(yīng)堅(jiān)持由易到難的做題順序。近年來(lái)高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。

  第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。

  第三,屬于非智力因素導(dǎo)致想不起來(lái)。本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì)做怎么辦?應(yīng)先跳過(guò)去,不是這道題不會(huì)做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩(wěn)定下來(lái)以后再回過(guò)頭來(lái)看會(huì)頓悟,豁然開(kāi)朗。

  第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。因?yàn)檫x擇題和填空題都是看結(jié)果不看過(guò)程,因此在這個(gè)過(guò)程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_(kāi)始也不看它的四個(gè)選項(xiàng),從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來(lái)。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡(jiǎn)單地說(shuō),規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫、誰(shuí)看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過(guò)程,這是規(guī)范答題。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  1、過(guò)兩點(diǎn)有且只有一條直線

  2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等——補(bǔ)角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯(cuò)角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯(cuò)角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理

  xxx兩邊的和大于第三邊

  16、推論

  xxx兩邊的差小于第三邊

  17、xxx內(nèi)角和定理:

  xxx三個(gè)內(nèi)角的和等于180°

  18、推論1

  直角xxx的兩個(gè)銳角互余

  19、推論2

  xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20、推論3

  xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21、全等xxx的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)xxx全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的

  兩個(gè)xxx全等

  24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角xxx全等

  27、定理1

  在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2

  到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30、推論1

  等腰xxx頂角的平分線平分底邊并且垂直于底邊

  31、推論2

  等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3

  等邊xxx的各角都相等,并且每一個(gè)角都等于60°

  33、等腰xxx的判定定理

  如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  34、等腰xxx的性質(zhì)定理

  等腰xxx的兩個(gè)底角相等

  (即等邊對(duì)等角)

  35、推論1

  三個(gè)角都相等的xxx是等邊xxx

  36、推論

  有一個(gè)角等于60°的等腰xxx是等邊xxx

  37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38、直角xxx斜邊上的中線等于斜邊上的一半

  39、定理

  線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理

  和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1

  關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43、定理

  如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44、定理3

  兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45、逆定理

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46、勾股定理

  直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果xxx的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx

  48、定理

  四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理

  n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對(duì)角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對(duì)邊相等

  54、推論

  夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對(duì)角線互相平分

  56、平行四邊形判定定理1

  兩組對(duì)角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對(duì)邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對(duì)角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對(duì)邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2

  矩形的對(duì)角線相等

  62、矩形判定定理1

  有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2

  對(duì)角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的.對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對(duì)角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2

  正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71、定理1

  關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72、定理2

  關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分

  73、逆定理

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對(duì)角線相等

  76、等腰梯形判定定理

  在同一底上的兩個(gè)角相等的梯

  形是等腰梯形

  77、對(duì)角線相等的梯形是等腰梯形

  78、平行線等分線段定理

  如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1

  經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80、推論2

  經(jīng)過(guò)xxx一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81、xxx中位線定理

  xxx的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理

  三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87、推論

  平行于xxx一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

  88、定理

  如果一條直線截xxx的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于xxx的第三邊

  89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對(duì)應(yīng)成比例

  90、定理

  平行于xxx一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的xxx與原xxx相似

  91、相似xxx判定定理1

  兩角對(duì)應(yīng)相等,兩xxx相似(ASA)

  92、直角xxx被斜邊上的高分成的兩個(gè)直角xxx和原xxx相似

  93、判定定理2

  兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩xxx相似(SAS)

  94、判定定理3

  三邊對(duì)應(yīng)成比例,兩xxx相似(SSS)

  95、定理

  如果一個(gè)直角xxx的斜邊和一條直角邊與另一個(gè)直角xxx的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角xxx相似(HL)

  96、性質(zhì)定理1

  相似xxx對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2

  相似xxx周長(zhǎng)的比等于相似比

  98、性質(zhì)定理3

  相似xxx面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理

  不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條。ㄖ睆剑

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  116、定理

  一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117、推論1

  同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  118、推論2

  半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  119、推論3

  如果xxx一邊上的中線等于這邊的一半,那么這個(gè)xxx是直角xxx

  120、定理

  圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  121、①直線L和⊙O相交

  0

 、谥本L和⊙O相切

  d=r

  ③直線L和⊙O相離

  d>r

  122、切線的判定定理

  經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

  124、推論1

  經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

  125、推論2

  經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

  126、切線長(zhǎng)定理

  從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對(duì)邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對(duì)的圓周角?

  129、推論

  如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項(xiàng)

  132、切割線定理

  從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?

  133、推論

  從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條

  割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135、①兩圓外離

  d>R+r

 、趦蓤A外切

  d=R+r

 、蹆蓤A相交

  R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切

  d=R-r(R>r)

 、輧蓤A內(nèi)含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

  ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138、定理

  任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角xxx

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長(zhǎng)

  142、正xxx面積√3a^2/4

  a表示邊長(zhǎng)

  143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長(zhǎng)=d-(R-r)

  外公切線長(zhǎng)=d-(R+r)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  初中數(shù)學(xué)總復(fù)習(xí),是對(duì)初中三年來(lái)所學(xué)數(shù)學(xué)知識(shí)的回顧,鞏固提高,查漏補(bǔ)缺,它不是對(duì)知識(shí)的簡(jiǎn)單重復(fù),而是引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行系統(tǒng)歸納和升華,并用已學(xué)的知識(shí)解決新問(wèn)題。進(jìn)一步加深對(duì)數(shù)學(xué)概念的理解,弄清各部分知識(shí)的內(nèi)在聯(lián)系,熟練掌握重要的數(shù)學(xué)方法和數(shù)學(xué)思想,從而達(dá)到開(kāi)發(fā)智力、培養(yǎng)能力的目的因此,初中數(shù)學(xué)總復(fù)習(xí)是非常重要的,復(fù)習(xí)的好壞將決定學(xué)生成績(jī)的好壞、決定學(xué)生掌握知識(shí)的牢固程度。一直以來(lái),如何有效提高復(fù)習(xí)效率,是廣大教師多年來(lái)探求的重要課題之一。筆者從1999年以來(lái),一直擔(dān)任初中數(shù)學(xué)的教學(xué)任務(wù),所教班級(jí)的數(shù)學(xué)中考考試成績(jī)一直名列前茅。下面筆者根據(jù)對(duì)初中數(shù)學(xué)總復(fù)習(xí)的實(shí)踐,總結(jié)出的一套較為實(shí)用的復(fù)習(xí)方法。

  一、復(fù)習(xí)基礎(chǔ)知識(shí)階段

  在初中數(shù)學(xué)復(fù)習(xí)中,第一階段要緊扣課本,疏理教材,使學(xué)生在頭腦中形成一個(gè)關(guān)于初中數(shù)學(xué)知識(shí)的前后相連、縱橫交錯(cuò)、融會(huì)貫通的知識(shí)結(jié)構(gòu)。在第一階段中,一般按初中數(shù)學(xué)知識(shí)體系把初中數(shù)學(xué)知識(shí)分成九個(gè)單元,即:“數(shù)與式”“方程和不等式(組)”“函數(shù)及其圖像”“統(tǒng)計(jì)與概率”“圖形初步認(rèn)識(shí)和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進(jìn)行復(fù)習(xí)。每個(gè)單元按下面步驟進(jìn)行。

  1、疏理知識(shí)結(jié)構(gòu)

  首先,引導(dǎo)學(xué)生把本單元的知識(shí)用文字、圖表等方式編織知識(shí)網(wǎng)絡(luò),用簡(jiǎn)表式的結(jié)構(gòu)表示本單元的知識(shí)結(jié)構(gòu);其次,引導(dǎo)學(xué)生回顧基礎(chǔ)知識(shí);最后,以基本習(xí)題的形式再現(xiàn)知識(shí)的內(nèi)容,即通過(guò)一些判斷題、填空題、選擇題、簡(jiǎn)單計(jì)算題的訓(xùn)練達(dá)到鞏固基礎(chǔ)知識(shí)的目的

  2、訓(xùn)練基本技能和解題技巧

  在理順知識(shí)結(jié)構(gòu)的基礎(chǔ)上,把每個(gè)單元按知識(shí)點(diǎn)分成若干課時(shí),然后按知識(shí)點(diǎn)精選例題和練習(xí)題,引導(dǎo)學(xué)生進(jìn)行多方練習(xí),多角度思考,正反求解,促進(jìn)學(xué)生掌握基礎(chǔ)知識(shí)和解題技巧。

  精選的例題和練習(xí)題最好從課本上尋找,因?yàn)橹锌嫉拿}原則是:“源于教材,高于教材!彼x例題、練習(xí)題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進(jìn)行訓(xùn)練。

  每課時(shí)的教學(xué)可按“理順知識(shí)――嘗試做例題――講解例題――練習(xí)――變式練習(xí)――作業(yè)”幾個(gè)步驟進(jìn)行。在“理解知識(shí)”階段力求簡(jiǎn)單明了地揭示本節(jié)課所要復(fù)習(xí)的知識(shí)點(diǎn),領(lǐng)會(huì)概念、定理、公理和數(shù)學(xué)思想方法。講解的例題或作業(yè)一般可選擇一部分題進(jìn)行“一題多變”“一題多解”的題目。在分析、講解例題時(shí)切不可就題論題,應(yīng)注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。

  3、單元測(cè)試

  在上述復(fù)習(xí)的基礎(chǔ)上,復(fù)習(xí)完每一個(gè)單元后,必須出示至少4份試卷。第一份試卷,以引導(dǎo)學(xué)生系統(tǒng)地梳理教材、構(gòu)建知識(shí)結(jié)構(gòu),歸納和總結(jié)各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結(jié)本單元的常用結(jié)論、解題方法、一題多解、一題多變?yōu)橹。?duì)學(xué)生進(jìn)行測(cè)試,以了解學(xué)生掌握知識(shí)的情況,及時(shí)查漏補(bǔ)缺。

  測(cè)試題應(yīng)以教學(xué)大綱、考標(biāo)、教材為依據(jù),要求內(nèi)容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發(fā)性。通過(guò)測(cè)試,全面衡量復(fù)習(xí)效果,一般來(lái)說(shuō),測(cè)試題可從以下幾個(gè)方面精選題目:(1)全面體現(xiàn)本單元的基礎(chǔ)知識(shí)的填空題和選擇題;(2)本單元所反映出的基本技能和技巧的解答題;(3)綜合運(yùn)用本單元知識(shí)的綜合題。

  上面三方面試題的比例為6∶3∶1測(cè)試完后,教師進(jìn)行講評(píng),對(duì)學(xué)生未弄懂的知識(shí)點(diǎn)及時(shí)進(jìn)行補(bǔ)救。

  二、綜合訓(xùn)練,加強(qiáng)重點(diǎn)知識(shí)階段

  在完成第一階段的基礎(chǔ)上,根據(jù)初中數(shù)學(xué)知識(shí)的重點(diǎn),選擇一些較為典型的綜合題,引導(dǎo)學(xué)生合作探索和研究,以培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)來(lái)分析問(wèn)題和解決問(wèn)題的能力。選擇的.題目一般從本市及全省近5年的中考試題中去精選。

  綜合題,一般來(lái)說(shuō)有代數(shù)綜合題、幾何綜合題、代數(shù)和幾何相結(jié)合的綜合題。代數(shù)綜合題的重點(diǎn)應(yīng)是二次方程和二次函數(shù);幾何綜合題的重點(diǎn)是三角形、四邊形和圖;代數(shù)與幾何相結(jié)合的綜合題則是方程、函數(shù)與圖像相結(jié)合的題。

  對(duì)于綜合題的訓(xùn)練,一般采用“嘗試練習(xí)――分析――講解――歸納解題方法與技巧――練習(xí)”的方式進(jìn)行。對(duì)重點(diǎn)問(wèn)題進(jìn)行一題多解、一題多變的訓(xùn)練。

  三、綜合測(cè)試,查漏補(bǔ)缺階段

  為了進(jìn)一步鞏固數(shù)學(xué)知識(shí),全面考查復(fù)習(xí)效果,提高學(xué)生的心理素質(zhì),在第二階段復(fù)習(xí)結(jié)束時(shí),可進(jìn)行模擬測(cè)試。測(cè)試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現(xiàn)初中數(shù)學(xué)知識(shí)和方法,既要有考查雙基的基礎(chǔ)題,又要有考查學(xué)生能力的綜合題。有的知識(shí)還要與高中知識(shí)銜接并拓展。

  考完一套,及時(shí)講評(píng),與學(xué)生一起分析,共同探討,列出知識(shí)清單使得每個(gè)學(xué)生經(jīng)歷知識(shí)收集、整理的過(guò)程,把書學(xué)“薄”,有效地回顧了一章書所學(xué)的知識(shí)。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  一、初中數(shù)學(xué)基本概念

  1.方程:含有未知數(shù)的等式叫做方程。

  2.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

  3.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。

  4.二元一次方程組:由兩個(gè)二元一次方程組成的方程組。

  5.一元二次方程:含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。

  6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。

  7.一元二次方程的根:一元二次方程的解。

  8.一元二次方程的判別式:當(dāng)a是正數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)a是負(fù)數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程沒(méi)有實(shí)數(shù)根;當(dāng)a是零時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)相等的實(shí)數(shù)根。

  9.函數(shù):在某變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),那么稱y是x的函數(shù),x叫做自變量。

  10.一次函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),那么稱y是x的一次函數(shù)。

  11.正比例函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),并且這個(gè)數(shù)值在比例上成正比,那么稱y是x的比例函數(shù)。

  12.反比例函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),并且這個(gè)數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。

  13.平行四邊形:在同一個(gè)平面內(nèi)兩組對(duì)角分別平行的四邊形叫做平行四邊形。

  14.矩形:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。

  15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

  16.正方形:四邊相等的矩形叫做正方形。

  17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。

  18.三角形:在同一個(gè)平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  19.中線:連接一個(gè)頂點(diǎn)和它對(duì)邊的中點(diǎn)的線段叫做中線。

  20.高線:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊作垂線,垂足與頂點(diǎn)之間的線段叫做高線。

  21.角平分線:三角形的一個(gè)內(nèi)角的平分線與它的對(duì)邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做角平分線。

  22.中位線:連接三角形兩邊中點(diǎn)的線段叫做中位線。

  23.軸對(duì)稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形。

  24.直接開(kāi)平方法:形如x2=p或者(nx+m)2=p(p≥0)的.一元二次方程可采用直接開(kāi)平方的方法解一元二次方程的方法。

  25.配方法:把一元二次方程的常數(shù)項(xiàng)移到方程的右邊,兩邊加上一次項(xiàng)系數(shù)的一半的平方,再用右邊的式子除以左邊的式子,得到一個(gè)平方的形式,再用直接開(kāi)平方的方法求解一元二次方程的方法。

  26.公式法:用求根公式解一元二次方程的方法。

  27.因式分解法:將一元二次方程分解成兩個(gè)一次因式的積等于0的一元二次方程,然后將各個(gè)因式分解,得到一元一次方程,再用直接開(kāi)方法求解一元一次方程的方法。

  二、初中數(shù)學(xué)基本運(yùn)算

  1.整式:?jiǎn)雾?xiàng)式和多項(xiàng)式的統(tǒng)稱。

  2.單項(xiàng)式:由數(shù)字和字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)字或字母也叫做單項(xiàng)式。

  3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中不含字母的項(xiàng)叫做常數(shù)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  1、相交線

  對(duì)頂角相等。

  過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

  連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短(簡(jiǎn)單說(shuō)成:垂線段最短)。

  2、平行線

  經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。

  如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  直線平行的`條件:

  兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。

  3、平行線的性質(zhì)

  兩條平行線被第三條直線所截,同位角相等。

  兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。

  兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。

  判斷一件事情的語(yǔ)句,叫做命題。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),判斷函數(shù)圖象.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),判斷函數(shù)圖象.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),判斷函數(shù)圖象.

  圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類型:

  1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,進(jìn)行分段,判斷函數(shù)圖象.

  2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,判斷函數(shù)圖象.

  3、多邊形與圓的`運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,判斷函數(shù)圖象.

  動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

  總結(jié)反思:

  本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

  解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

  解答函數(shù)的圖象問(wèn)題一般遵循的步驟:

  1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

  2、自變量變化函數(shù)值也變化的增減變化情況.

  3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  初中數(shù)學(xué)例題的知識(shí)點(diǎn)梳理

  有理數(shù)的加法運(yùn)算:同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,符號(hào)跟著大的跑;絕對(duì)值相等“零”正好!咀ⅰ俊按蟆睖p“小”是指絕對(duì)值的大小。

  合并同類項(xiàng):合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

  去、添括號(hào)法則:去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。

  恒等變換:兩個(gè)數(shù)字來(lái)相減,互換位置最常見(jiàn),正負(fù)只看其指數(shù),奇數(shù)變號(hào)偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n

  平方差公式:平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方:完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。

  因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來(lái)分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。

  “代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級(jí)向下變括。ㄐ 小螅

  單項(xiàng)式運(yùn)算:加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。

  一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)、合并好,再把系數(shù)來(lái)除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。

  一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無(wú)處找。

  一元二次不等式、一元一次絕對(duì)值不等式的解集:大(魚(yú))于(吃)取兩邊,。~(yú))于(吃)取中間。

  分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。

  分式方程的解法步驟:同乘最簡(jiǎn)公分母,化成整式寫清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。

  最簡(jiǎn)根式的條件:最簡(jiǎn)根式三條件,號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。

  特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(—,+),(—,—)和(+,—),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。

  象限角的'平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。

  平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。

  對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反,Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。

  自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。

  函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。

  一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

  二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。

  反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。

  巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開(kāi),再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚(yú),說(shuō)了這么一句話:正對(duì)魚(yú)磷(余鄰)直刀切。正:

  正弦或正切,對(duì):對(duì)邊即正是對(duì);余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

  三角函數(shù)的增減性:正增余減。

  特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

  數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)

  平行四邊形的判定:要證平行四邊形,兩個(gè)條件才能行,一證對(duì)邊都相等,或證對(duì)邊都平行,一組對(duì)邊也可以,必須相等且平行。對(duì)角線,是個(gè)寶,互相平分“跑不了”,對(duì)角相等也有用,“兩組對(duì)角”才能成。

  梯形問(wèn)題的輔助線:移動(dòng)梯形對(duì)角線,兩腰之和成一線;平行移動(dòng)一條腰,兩腰同在“△”現(xiàn);延長(zhǎng)兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

  添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點(diǎn),連接則成中位線;三角形中有中線,延長(zhǎng)中線翻一番。

  圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見(jiàn),圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對(duì)角互補(bǔ)記心間,外角等于內(nèi)對(duì)角,四邊形定內(nèi)接圓;直角相對(duì)或共弦,試試加個(gè)輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;要想證明圓切線,垂直半徑過(guò)外端,直線與圓有共點(diǎn),證垂直來(lái)半徑連,直線與圓未給點(diǎn),需證半徑作垂線;四邊形有內(nèi)切圓,對(duì)邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。

  學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。

  經(jīng)過(guò)上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì)更大。

  2、研究每題都考什么

  數(shù)學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過(guò)一題聯(lián)想到很多題。

  3、錯(cuò)一次反思一次

  每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來(lái)。

  學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了。

  4、分析試卷總結(jié)經(jīng)驗(yàn)

  每次考試結(jié)束試卷發(fā)下來(lái),要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。

  數(shù)學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的公式。其中,用的.最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

  2、因式分解法

  因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱未知或變?cè)。用新的參?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問(wèn)題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問(wèn)題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問(wèn)題,這種問(wèn)題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結(jié)論來(lái)使用這些方法來(lái)構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問(wèn)題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問(wèn)題。

  數(shù)學(xué)經(jīng)常遇到的問(wèn)題解答

  1、要提高數(shù)學(xué)成績(jī)首先要做什么?

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺(jué)得基礎(chǔ)知識(shí)過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺(jué)良好”其實(shí)是一種錯(cuò)覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。

  2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?

  對(duì)于基礎(chǔ)差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術(shù)?

  方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。

  4、做題總是粗心怎么辦?

  很多學(xué)生成績(jī)不好,會(huì)說(shuō)自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒(méi)有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒(méi)有“粗心”只有“不用心”。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  第一章:勾股定理

  1.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。

  2.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。

  3.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的.平方。

  4.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。

  第二章:四邊形

  1.平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

  2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。

  3.矩形:有一個(gè)角是直角的平行四邊形叫做矩形。

  4.正方形:有一組鄰邊相等的矩形叫做正方形。

  5.平行四邊形的性質(zhì):對(duì)邊平行且相等;對(duì)角相等,且互補(bǔ);對(duì)角線互相平分。

  6.菱形的性質(zhì):四邊相等;對(duì)角線互相垂直,且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半。

  7.矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線相等。

  8.正方形的性質(zhì):四個(gè)角都是直角,四條邊都相等;對(duì)角線相等,且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形被兩條對(duì)角線分成四個(gè)全等的直角三角形;正方形是特殊的長(zhǎng)方形,所以正方形具有矩形的一切性質(zhì)。

  第三章:一次函數(shù)

  1.一次函數(shù):如果所給函數(shù)表達(dá)式是正比例函數(shù),那么它經(jīng)過(guò)原點(diǎn)(0,0);如果所給函數(shù)表達(dá)式是一次函數(shù)(斜截式),那么它經(jīng)過(guò)原點(diǎn)(0,0)。

  2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。

  4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。

  5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。

  7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。

  9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  20xx年的工作臨近尾聲,回首本年度真是忙碌而充實(shí),本年度我即擔(dān)任教導(dǎo)處主任一職又擔(dān)任班主任工作,經(jīng)常是忙的喝口水的時(shí)間都沒(méi)有。雖然在教導(dǎo)處主任的崗位上我只有不到一年的工作經(jīng)驗(yàn),但是在李校長(zhǎng)的關(guān)心和培養(yǎng)下,在全體領(lǐng)導(dǎo)、老師、家長(zhǎng)的熱情支持和幫助下,各項(xiàng)工作得以順利開(kāi)展并在一些方面有了較為明顯的進(jìn)步,F(xiàn)對(duì)自己一年來(lái)所做工作加以梳理和反思,力求在總結(jié)中發(fā)現(xiàn)不足,在反思中縮中差距,在創(chuàng)新中不斷提升。

  一、思想品德方面

  我熱愛(ài)教育事業(yè),始初不忘人民教師職責(zé),愛(ài)學(xué)校、愛(ài)學(xué)生。作為一名名師,我從自身嚴(yán)格要求自己,通過(guò)政治思想、學(xué)識(shí)水平、教育教學(xué)能力等方面的不斷提高來(lái)塑造自己的行為,使自己在教育行業(yè)中不斷成長(zhǎng),為社會(huì)培養(yǎng)出優(yōu)秀的人才,打下堅(jiān)實(shí)的基礎(chǔ)。

  二、主要成績(jī)

  今年是我到工作的第五個(gè)年頭,幾年來(lái)我一直擔(dān)任班主任和年級(jí)的組長(zhǎng),同時(shí)又負(fù)責(zé)學(xué)校教導(dǎo)處工作,一直以來(lái),我始初牢記"踏實(shí)工作、真心待人"的原則,在工作中嚴(yán)格要求自己,刻苦鉆研業(yè)務(wù),不斷提高業(yè)務(wù)水平,不斷學(xué)習(xí)新知識(shí),探索教育教學(xué)規(guī)律,改進(jìn)教育教學(xué)方法,努力使自己成為專家型教師。

  1、在班主任工作方面:我投入了極強(qiáng)的責(zé)任心,關(guān)注每一名學(xué)生,及時(shí)發(fā)現(xiàn)他們的各種心理或行為動(dòng)態(tài),還有學(xué)習(xí)的心態(tài)與學(xué)習(xí)情況,用愛(ài)心與耐心澆灌每一個(gè)孩子,并且及時(shí)與家長(zhǎng)、科任老師進(jìn)行溝通,使孩子在各個(gè)方面得到發(fā)展,幾年來(lái),與學(xué)生形成了亦師亦友的和諧師生關(guān)系,在18年被評(píng)為省級(jí)師德先進(jìn)個(gè)人,19年被評(píng)為省級(jí)優(yōu)秀教師。加強(qiáng)學(xué)習(xí),努力提升自身修為。

  2、在教學(xué)方面:我嚴(yán)格要求自己,用心備課上課,每一節(jié)課都精心準(zhǔn)備課件,仔細(xì)研究每一道習(xí)題,真正做到講練結(jié)合,學(xué)以致用,形成了趣實(shí)活新的教學(xué)風(fēng)格,同時(shí),在教研方面,我積極去聽(tīng)課評(píng)課,認(rèn)真學(xué)習(xí)別人上課的長(zhǎng)處,為己所用。在17年被評(píng)為市級(jí)名師工作室主持人,18年被評(píng)為省級(jí)學(xué)科帶頭人。

  3、在教導(dǎo)方面:在做好班主任工作的同時(shí),我作為校長(zhǎng)助理、教導(dǎo)主任,我能正確定位,努力做好校長(zhǎng)的助手,協(xié)調(diào)各種工作。

  一直以來(lái)我總是以飽滿的熱情對(duì)待本職工作,兢兢業(yè)業(yè),忠于職守,凡是要求老師們做到的,自己首先做到。我始初認(rèn)真落實(shí)學(xué)校制定的教學(xué)教研常規(guī),不斷規(guī)范教師教學(xué)行為。從學(xué)期初開(kāi)始,認(rèn)真執(zhí)行教學(xué)教研工作計(jì)劃和工作記錄,嚴(yán)格按照學(xué)校修訂的規(guī)章制度去要求師生,定期檢查教師教案及作業(yè)批改情況,發(fā)現(xiàn)問(wèn)題及時(shí)反饋及時(shí)做好總結(jié)并進(jìn)行跟蹤檢查,期末對(duì)教案進(jìn)行歸納整理。規(guī)范日常巡課制度,定時(shí)巡課與不定時(shí)巡課相結(jié)合,不定時(shí)跟班聽(tīng)課,與執(zhí)教教師共同切磋存在的問(wèn)題,加強(qiáng)對(duì)教學(xué)工作的監(jiān)控,促進(jìn)教學(xué)質(zhì)量的提高。

  學(xué)校要發(fā)展、要生存必須有一批高素質(zhì)的教師隊(duì)伍,同樣教師今后要生存要發(fā)展必須具有過(guò)硬的本領(lǐng)。我清楚的認(rèn)識(shí)到必須加強(qiáng)骨干教師、青年教師的培養(yǎng)力度,也借助各種機(jī)遇,為教師搭建自我展示的'平臺(tái)。加大新教師的培養(yǎng)力度,開(kāi)展“師徒結(jié)對(duì)子”活動(dòng),通過(guò)推門聽(tīng)課,領(lǐng)導(dǎo)聽(tīng)課、一課三研、師傅引領(lǐng)課、新教師展示課等,鼓勵(lì)教師參加各級(jí)各類比賽、培訓(xùn)活動(dòng)等形式,促進(jìn)新教師的迅速成長(zhǎng)。我精心制定了以人為本的校本培訓(xùn)計(jì)劃,每學(xué)期開(kāi)展十多次骨干培訓(xùn)活動(dòng),并進(jìn)行讀書交流活動(dòng),活動(dòng)做到人人有準(zhǔn)備,人人有發(fā)言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學(xué)水準(zhǔn)。

  通過(guò)開(kāi)展語(yǔ)、數(shù)集體備課—上課—聽(tīng)課——評(píng)課研討這樣的教研活動(dòng)觀摩,讓更多的教師參與到校本教研活動(dòng)中來(lái),增強(qiáng)了教研活動(dòng)的實(shí)效性,提高了教師的課堂教學(xué)水平。新教師展示課活動(dòng),“中荷才露尖尖角”,新教師在歷練中成長(zhǎng);常態(tài)化的研討課,“萬(wàn)紫千紅總是春”,老師們?nèi)¢L(zhǎng)補(bǔ)短,共同促進(jìn);名師、骨干教師的精品課,“萬(wàn)綠叢中一點(diǎn)紅”,起了引領(lǐng)示范的作用。

  教科研是教學(xué)的源泉,是教改的先導(dǎo),我十分重視課題研究、管理。18年獨(dú)立承擔(dān)了省級(jí)重點(diǎn)課題研究已經(jīng)結(jié)題,并被評(píng)為科研課題先進(jìn)個(gè)人,19年又獨(dú)立承擔(dān)了中課題的研究,已經(jīng)接近尾聲。

  4、自身提高方面:我能利用課余時(shí)間閱讀一些教育名著及教育教學(xué)刊物,并及時(shí)做好讀書筆記,建立個(gè)人博客,發(fā)表自己原創(chuàng)的教學(xué)感想、教案設(shè)計(jì)、學(xué)習(xí)心得、教育理念等文章。一份耕耘,一份收獲”,一年來(lái),我積極參加各級(jí)各類比賽,多次獲獎(jiǎng),還被評(píng)為縣級(jí)學(xué)科帶頭人。

  三、存在的不足

  回顧一年來(lái)的工作,我雖然取得了一些成績(jī),積累了一些經(jīng)驗(yàn),但是,實(shí)事求是地說(shuō),與領(lǐng)導(dǎo)的要求和自己的期待還有差距,主要表現(xiàn)在:

  1、對(duì)教導(dǎo)處管理工作還須腳踏實(shí)地地去做,謙虛認(rèn)真地去學(xué),以使自己取得更好的成績(jī)。

  2、教學(xué)方面對(duì)差生主要是采取開(kāi)中灶、嚴(yán)要求的方式進(jìn)行強(qiáng)化管理,對(duì)其心理攻堅(jiān)尚不到位,所以見(jiàn)效慢,容易激化師生間的矛盾,還得在實(shí)踐中多摸索。課堂教學(xué)水平有待提高,要與同事們多切磋,多學(xué)習(xí)。

  3、教研方面,仍需強(qiáng)化、深化、細(xì)化地系統(tǒng)學(xué)習(xí)相關(guān)理論知識(shí),所寫隨感不能僅僅停留在表面現(xiàn)象,還應(yīng)善于總結(jié)提升,以形成有一定深度的,并具有自我指導(dǎo)意義的理論型文字。

  另外,意志仍不夠堅(jiān)強(qiáng),堅(jiān)持還不夠徹底,實(shí)是欠缺“鐵杵磨成針”的精神?傊,回顧取得的成績(jī),固然可喜,值得欣慰,但面對(duì)未來(lái),仍感任重道遠(yuǎn)、不敢懈怠。

  最后,用一句話作為本年度的工作總結(jié),下一年度的開(kāi)始,也就是:既然選擇了遠(yuǎn)方,必然風(fēng)雨兼程。我將某某,繼續(xù)前行!

  關(guān)于數(shù)學(xué)常見(jiàn)誤區(qū)有哪些

  1、被動(dòng)學(xué)習(xí)

  許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門道”,沒(méi)有真正理解所學(xué)內(nèi)容。

  2、學(xué)不得法

  老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、不重視基礎(chǔ)

  一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。

  4、進(jìn)一步學(xué)習(xí)條件不具備

  高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。

  如二次函數(shù)在閉區(qū)間上的最值問(wèn)題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問(wèn)題等?陀^上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  初中數(shù)學(xué)的學(xué)科地位很高,一直以來(lái)是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。

  圓心角

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。

  推理過(guò)程

  根據(jù)旋轉(zhuǎn)的'性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時(shí),顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點(diǎn)a與a'重合,b與b'重合。

  因此,弧ab與弧a'b'重合,ab與a'b'重合。即

  弧ab=弧a'b',ab=a'b'。

  則得到上面定理。

  同樣還可以得到:

  在同圓或等圓中,如果兩條弧相等,那么他們所對(duì)的圓心角相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。

  在同圓或等圓中,如果兩條弦相等,那么他們所對(duì)的圓心角相等,所對(duì)的弧相等,所對(duì)的弦心距也相等。

  所以,在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,它們所對(duì)應(yīng)的其余各組量也相等。

  圓的圓心角知識(shí)要領(lǐng)很容易掌握,經(jīng)常會(huì)出現(xiàn)在關(guān)于圓的證明題中。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  一、實(shí)數(shù)

  1.平方根性質(zhì):

 。1)一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);

 。2)零的平方根是零;

 。3)負(fù)數(shù)沒(méi)有平方根。

  2.算術(shù)平方根性質(zhì):

 。1)一個(gè)正數(shù)的正的平方根叫做它的算術(shù)平方根;

 。2)零的算術(shù)平方根是零;

 。3)負(fù)數(shù)沒(méi)有算術(shù)平方根。

  3.立方根性質(zhì):

  (1)正數(shù)的立方根是正數(shù);

  (2)零的立方根是零;

 。3)負(fù)數(shù)的立方根是負(fù)數(shù)。

  4.實(shí)數(shù)的性質(zhì):

 。1)零是唯一沒(méi)有平方根的數(shù);

 。2)正數(shù)和負(fù)數(shù)可以沒(méi)有算術(shù)平方根;

 。3)任何實(shí)數(shù)的立方根只有唯一的一個(gè);

 。4)正數(shù)的立方根與它本身和零同類。

  二、整式的運(yùn)算

  1.整式范圍:

 。1)整式可以化為分?jǐn)?shù)或整數(shù);

  (2)整式可以化為負(fù)數(shù)或非負(fù)數(shù);

  (3)整式可以化為奇數(shù)或偶數(shù);

  (4)整式可以化簡(jiǎn)為分?jǐn)?shù)指數(shù)冪。

  2.單項(xiàng)式:

 。1)單項(xiàng)式的系數(shù)是數(shù)字因數(shù);

 。2)一個(gè)單項(xiàng)式中所有字母的指數(shù)的和叫做單項(xiàng)式的次數(shù)。

  3.多項(xiàng)式:

 。1)多項(xiàng)式的每一項(xiàng)都是一個(gè)單項(xiàng)式;

 。2)一個(gè)多項(xiàng)式的'項(xiàng)數(shù)與多項(xiàng)式中含有幾個(gè)單項(xiàng)式有關(guān)。

  4.同底數(shù)冪的乘法:

 。1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;

 。2)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。

  5.冪的乘方:

  冪的乘方,底數(shù)不變,指數(shù)相乘。

  6.積的乘方:

  (1)積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘;

  (2)1的乘方等于1。

  7.同底數(shù)冪的除法:

  (1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減;

 。2)0的任何正整數(shù)次冪都是0。

  8.分式:

  (1)分式是整式的一種,在整式中區(qū)別于整式,分式的分母中必須含有字母;

 。2)分式的值等于分子除以分母。

  9.分式的運(yùn)算:

 。1)分式的乘方:分式與分式相乘,再把被乘式的分子、分母分別與乘式的分子、分母相乘,即分子相乘的積做積的分子,分母相乘的積做積的分母;

 。2)分式的除法:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;

  (3)分式的加減:異分母分式的加減運(yùn)算,為了使不同分母的分?jǐn)?shù)直接相加減不便,因此常把不同分母的分?jǐn)?shù)分別化成與原來(lái)的分母相同的分母后再相加減。

  三、方程與方程組

  1.方程:

  (1)含有未知數(shù)的等式叫方程;

 。2)使方程左右兩邊相等的未知數(shù)的值,叫做方程的解;

  (3)求方程的解的過(guò)程叫做解方程。

  2.方程的解:

  (1)能使方程左右兩邊相等的未知數(shù)的值;

 。2)一個(gè)數(shù)(它不一定是數(shù),也可以是符號(hào)和運(yùn)算)是某一等式(含有未知數(shù)的等式)的解,那么這個(gè)數(shù)就叫做該等式的解。

  3.一元一次方程:

 。1)只有一個(gè)未知數(shù);

  (2)未知數(shù)的最高次數(shù)為1;

 。3)整式方程。

  4.方程的解法:

 。1)去分母:在方程兩端同乘各分母的最小公倍數(shù);

 。2)去括號(hào):去括號(hào)要變號(hào);

 。3)移項(xiàng):把含有未知數(shù)的項(xiàng)移到等號(hào)的一邊,其他項(xiàng)移到另一邊;

  (4)合并同類項(xiàng):化未知數(shù)為已知數(shù);

 。5)系數(shù)化成1:在方程兩端同除以未知數(shù)的系數(shù)。

  5.列方程解應(yīng)用題

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  常用數(shù)學(xué)公式

  乘法與因式分a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理

  判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac

  某些數(shù)列前n項(xiàng)和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

  圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py

  直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h

  正棱錐側(cè)面積S=1/2c*h"正棱臺(tái)側(cè)面積S=1/2(c+c")h"圓臺(tái)側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

  弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

  錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長(zhǎng)柱體體積公式V=s*h圓柱體V=pi*r2h

  1過(guò)兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

  5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

  6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯(cuò)角相等14兩直線平行,同旁內(nèi)角互補(bǔ)

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分

  56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對(duì)角線相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對(duì)角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對(duì)稱的'兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對(duì)角線相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對(duì)角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)

  94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

  122切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

  123切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

  126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對(duì)邊的和相等

  128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

  133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

  ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)142正三角形面積√3a/4a表示邊長(zhǎng)

  143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(zhǎng)計(jì)算公式:L=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  整式的加減

  2、1整式

  1、單項(xiàng)式:由數(shù)字和字母乘積組成的式子。系數(shù),單項(xiàng)式的次數(shù)、單項(xiàng)式指的是數(shù)或字母的積的代數(shù)式、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式、因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運(yùn)算關(guān)系,其也不是單項(xiàng)式、

  2、單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);

  3、單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的指數(shù)的和、

  4、多項(xiàng)式:幾個(gè)單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式、每個(gè)單項(xiàng)式稱項(xiàng),常數(shù)項(xiàng),多項(xiàng)式的次數(shù)就是多項(xiàng)式中次數(shù)的次數(shù)。多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),這里是次數(shù)項(xiàng),其次數(shù)是6;多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中,每一個(gè)單項(xiàng)式、特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號(hào)、

  5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào)。

  6、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  2、2整式的加減

  1、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)。與字母前面的系數(shù)(≠0)無(wú)關(guān)。

  2、同類項(xiàng)必須同時(shí)滿足兩個(gè)條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可、同類項(xiàng)與系數(shù)大小、字母的排列順序無(wú)關(guān)

  3、合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)?梢赃\(yùn)用交換律,結(jié)合律和分配律。

  4、合并同類項(xiàng)法則:合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變;

  5、去括號(hào)法則:去括號(hào),看符號(hào):是正號(hào),不變號(hào);是負(fù)號(hào),全變號(hào)。

  6、整式加減的一般步驟:

  一去、二找、三合

  (1)如果遇到括號(hào)按去括號(hào)法則先去括號(hào)、(2)結(jié)合同類項(xiàng)、(3)合并同類項(xiàng)葫蘆島

  初中數(shù)學(xué)知識(shí)點(diǎn)歸納

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數(shù)特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數(shù)記憶順口溜

  1三角函數(shù)記憶口訣

  “奇、偶”指的是π/2的.倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。

  2符號(hào)判斷口訣

  全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱?谠E中未提及的都是負(fù)值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫所占的象限對(duì)應(yīng)的三角函數(shù)為正值。

  3三角函數(shù)順口溜

  三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

  同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

  中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。

  逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

  萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

  初中數(shù)學(xué)知識(shí)點(diǎn)大全

  誘導(dǎo)公式的本質(zhì)

  所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

  常用的誘導(dǎo)公式

  公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

  sin( )=-sin

  cos( )=-cos

  tan( )=tan

  cot( )=cot

  公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

  sin( )=sin

  cos( )=-cos

  tan( )=-tan

  cot( )=-cot

【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)03-11

初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)09-19

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-24

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-24

初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)03-16

初中數(shù)學(xué)代數(shù)知識(shí)點(diǎn)總結(jié)03-06

初中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)02-22

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-07

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-04

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)04-12