- 相關(guān)推薦
勾股定理反思
在當(dāng)今社會生活中,我們需要很強的教學(xué)能力,反思過去,是為了以后。那么大家知道正規(guī)的反思怎么寫嗎?以下是小編為大家收集的勾股定理反思,僅供參考,歡迎大家閱讀。

勾股定理反思1
對于“勾股定理的應(yīng)用”的反思和小結(jié)有以下幾個方面:
1、課前準(zhǔn)備不充分:
基礎(chǔ)題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設(shè)計原理相同),其中兩個正方形的面積分別是14和18,求最大的正方形的面積。
分析:由勾股定理結(jié)論:直角三角形中兩直角邊的平方和等于斜邊的平方。
其實質(zhì)即以直角三角形兩直角邊為邊長的兩個正方形面積之和等于以斜邊為邊長的正方形的面積。但學(xué)生竟然不知道。其二是課件準(zhǔn)備不充分,其中有一道例題的答案是跟著例題同時出現(xiàn)的,再去修改,又浪費了一點時間。其三,用面積法求直角三角形的高,我認(rèn)為是一個非常簡單的數(shù)學(xué)問題,但在實際教學(xué)中,發(fā)現(xiàn)很多學(xué)生仍然很難理解,說明我在備課時備學(xué)生不充分,沒有站在學(xué)生的角度去考慮問題。
2、課堂上的語言應(yīng)該簡練。這是我上課的最大弱點,我不敢放手讓學(xué)生去獨立思考問題,會去重復(fù)題目意思,實際上不需要的,可以留時間讓學(xué)生去獨立思考。教師是無法代替學(xué)生自己的思考的.,更不能代替幾十個有差異的學(xué)生的思維。課堂上老師放一放,學(xué)生得到的更多,老師放多少,學(xué)生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門藝術(shù),我要好好向老教師學(xué)習(xí)!
3、鼓勵學(xué)生的藝術(shù)。教師要鼓勵學(xué)生嘗試并尊重他們不完善的甚至錯誤的意見,經(jīng)常鼓勵他們大膽說出自己的想法,大膽發(fā)表自己的見解,真正體現(xiàn)出學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。
4、啟發(fā)學(xué)生的技巧有待提高。啟發(fā)學(xué)生也是一門藝術(shù),我的課堂上有點啟而不發(fā)。課堂上應(yīng)該多了解學(xué)生。
勾股定理反思2
星期四下午講了《勾股定理逆定理》第一課時,現(xiàn)對本節(jié)課反思如下:
。1)這節(jié)課的設(shè)計思路比較合理:著重體現(xiàn)“探究”這一主題,從“古埃及人得到直角三角形的方法”到學(xué)生用木棒模仿操作,再到畫圖自己證明等一系列活動,得出“勾股定理逆定理”,而對互逆命題,原命題,逆命題等概念的講解只是作為新課引入的命題點化了一下,沒有詳細(xì)講解、把這節(jié)課的重點放在了如何讓學(xué)生通過三角形三邊關(guān)系判斷是否是直角三角形?在經(jīng)過課堂練習(xí)及課堂檢測來強化學(xué)生對勾股定理逆定理的`理解,分別從三角形的邊和角這方面來引導(dǎo)學(xué)生。
。2)本課PPT的使用是想凸顯“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考,意義讓學(xué)生概括,結(jié)論讓學(xué)生驗證,難點讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路,每個環(huán)節(jié)都是緊密相接的。
。3)課堂教學(xué)環(huán)節(jié)和教學(xué)效果我感覺很滿意,學(xué)生在對問題的回答很積極,在突破難點的過程中,學(xué)生通過小組合作實驗交流,自己總結(jié)歸納勾股定理逆定理,及證明中我給與學(xué)生充分的思考時間讓學(xué)生自己完成。整個過程中體現(xiàn)了以學(xué)生為主,老師為主導(dǎo)的作用,課堂氣氛活躍,效果挺好。
本節(jié)課的不足之處及改進方法:
1、本節(jié)課我沒有及時發(fā)現(xiàn)學(xué)生的錯誤。在學(xué)生上黑板做題時出現(xiàn)的錯誤沒能及時發(fā)現(xiàn)及改正。
2、課堂檢測做完后應(yīng)讓學(xué)生自己講解,但時間不夠?qū)е逻@一環(huán)節(jié)沒能讓學(xué)生完成,而是在投影對了答案。
在以后教學(xué)中,我會不斷地更新教育理念,結(jié)合學(xué)生的認(rèn)知規(guī)律、生活經(jīng)驗對數(shù)教材進行再創(chuàng)造,選取密切聯(lián)系學(xué)生現(xiàn)實生活和生動有趣的數(shù)學(xué)素材,為學(xué)生提供充分的數(shù)學(xué)活動和交流的空間,真正把創(chuàng)造還給學(xué)生,讓學(xué)生動起來,讓課堂煥發(fā)新的活力。
勾股定理反思3
時光稍縱即逝,轉(zhuǎn)眼間一個新的學(xué)期又要結(jié)束了,回顧已逝的教學(xué)時光,可謂百味俱全,其間有一節(jié)課我上得最投入、最值得回憶與反思。
記得那是期末的展示匯報課,(主任說可能會有校外的教師來聽課。)我當(dāng)時很有壓力,晚上也難以入睡。我選的是《勾股定理》一課。為了上好這節(jié)課,我反復(fù)研究了去洋思學(xué)習(xí)的一些記錄,努力用新理念新手段來打造我的這節(jié)課。當(dāng)我滿懷信心地上完這節(jié)課時,我心情愉悅,因為我教態(tài)自然得體,與學(xué)生合作默契,基本上獲得了教學(xué)的成功。
1、從生活出發(fā)的教學(xué)讓學(xué)生感受到學(xué)習(xí)的快樂
在“勾股定理”這節(jié)課中,一開始引入情景:
平平湖水清可鑒,荷花半尺出水面。
忽來一陣狂風(fēng)急,吹倒荷花水中偃。
湖面之上不復(fù)見,入秋漁翁始發(fā)現(xiàn)。
花離根二尺遠,試問水深尺若干。
知識回味:復(fù)習(xí)勾股定理及它的公式變形,然后是幾組簡單的計算。
2、走進生活:以裝修房子為主線,設(shè)計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應(yīng)用的'典型例題。
3、名題欣賞:首尾呼應(yīng),用“代數(shù)方法”解決“幾何問題”。印度數(shù)學(xué)家婆什迦羅(1141—1225年)提出的“荷花問題”比我國的“引葭赴岸”問題晚了一千多年。“引葭赴岸”問題,是我國數(shù)學(xué)經(jīng)典著作《九章算術(shù)》中的一道名題。《九章算術(shù)》約成書于公元一世紀(jì)。該書的第九章,即勾股章,詳細(xì)討論了用勾股定理解決應(yīng)用問題的方法。這一章的第6題,就是“引葭赴岸”問題,題目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,適與岸齊。問水深、葭長各幾何?” “荷花問題”的解法與“引葭赴岸”問題一樣。它的出現(xiàn)卻足以證明,舉世公認(rèn)的古典數(shù)學(xué)名著《九章算術(shù)》傳入了印度!毒耪滤阈g(shù)》中的勾股定理應(yīng)用方面的內(nèi)容,涉及范圍之廣,解法之精巧,都是在世界上遙遙領(lǐng)先的,為推動世界數(shù)學(xué)的發(fā)展作出了貢獻。鼓勵學(xué)生可以自己利用課余時間查閱相關(guān)資料,豐富知識。
4、在教學(xué)應(yīng)用勾股定理時,老是運用公式計算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。并且將問題用動畫的形式展現(xiàn)出來,不僅將問題形象化,又提高了學(xué)生的學(xué)習(xí)興趣。同時將實際的問題轉(zhuǎn)化為數(shù)學(xué)問題的過程用直觀的圖形表示,在降低難度的同時又鼓勵了學(xué)生能夠看到身邊的數(shù)學(xué),從而做到學(xué)以致用。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時培養(yǎng)了學(xué)生之間的合作。
5、最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進行查閱、了解。這是為了方便學(xué)生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡(luò)資源的重新組織,使學(xué)生對知識的需求由窄到寬,有力的促進了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識,還讓他們有了怎樣學(xué)習(xí)知識的方法。這就達到了新課標(biāo)新理念的預(yù)定目標(biāo)。
通過本節(jié)課的教學(xué),學(xué)生在勾股定理的學(xué)習(xí)中能感受“數(shù)形結(jié)合”和“轉(zhuǎn)化”的數(shù)學(xué)思想,體會數(shù)學(xué)的應(yīng)用價值和滲透數(shù)學(xué)思想給解題帶來的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入課堂,有利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動腦動手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實驗室”,學(xué)生通過自己的活動得出結(jié)論、使創(chuàng)新精神與實踐能力得到了發(fā)展。不足之處:學(xué)生合作意識不強,討論氣氛不夠活躍;計算不熟練,書寫不規(guī)范。
勾股定理反思4
本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察--猜想--歸納--驗證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學(xué)生深刻的體會到了,不是所有三角形三邊都有a2+ b2= c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實驗很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達到了再次點燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。
除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神。
練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用。
讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面。給學(xué)生自由的空間,鼓勵學(xué)生多說。這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的`綜合及表達能力。
作業(yè)為了達到提高鞏固的目的,期望學(xué)生能主動地探求對勾股定理更深入的認(rèn)識、拓展學(xué)生的視野。
通過這節(jié)課,備課、上課后,我個人還有一些困惑,一是問題情境的創(chuàng)設(shè)(放片子),原本的意圖是激發(fā)學(xué)生的學(xué)習(xí)興趣,可是感覺學(xué)生反映平平。創(chuàng)設(shè)什么樣的問題情景更合適?
二是:探究問題的設(shè)計(放片子),本節(jié)課是一節(jié)典型的探究課,如何設(shè)計探究問題,才能使學(xué)生在探究過程中數(shù)學(xué)學(xué)習(xí)能力得到提高,教學(xué)任務(wù)順利完成并達到預(yù)期效果?
勾股定理反思5
首先,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
一直以來,數(shù)學(xué)作為一門主要學(xué)科,在各階段考試中都占有重要的地位,而且數(shù)學(xué)也是自然科學(xué)的基礎(chǔ)學(xué)科,因此學(xué)生學(xué)習(xí)的好與壞,即直接影響的最終成績,也對其他理科的學(xué)習(xí)有一定的影響。目前,人們獲得數(shù)學(xué)知識的場所主要在數(shù)學(xué)課堂,而在中學(xué)大多數(shù)課堂教學(xué)的模式是“教師講、學(xué)生聽”的傳統(tǒng)教學(xué),教師處于主動地位,學(xué)生被動接收知識。教師上課前認(rèn)真?zhèn)湔n,想方設(shè)法讓學(xué)生把問題想清楚。學(xué)生課堂上可以走神,對教師講的問題可認(rèn)真想,也可不去想,反正最后老師要給出答案的。于是出現(xiàn)了這樣一種情況:數(shù)學(xué)家在“做”數(shù)學(xué),數(shù)學(xué)教師在“講”數(shù)學(xué),而學(xué)生在“聽”數(shù)學(xué)。然而數(shù)學(xué)光靠聽,當(dāng)然學(xué)生也就漸漸失去了學(xué)習(xí)數(shù)學(xué)的興趣。都說興趣是最好的老師,可是傳統(tǒng)的數(shù)學(xué)教學(xué)本身就具有抽象性,光靠講,很難不去乏味。在多媒體的教學(xué)環(huán)境下,教學(xué)信息的呈現(xiàn)方式是立體、豐富且生動有趣的,學(xué)生對于如此眾多的信息呈現(xiàn)形式,表現(xiàn)出的是強烈的興趣,真正做到了全方位地調(diào)動學(xué)生的多種感官參與學(xué)習(xí),使抽象的內(nèi)容變得更具體、易懂,更有利于激發(fā)學(xué)習(xí)興趣,極大提高學(xué)生的參與度。多媒體可以產(chǎn)生一種新的圖文并茂、豐富多彩的人機對話方式,而且可以立即對學(xué)習(xí)的內(nèi)容掌握情況進行反饋。在這種交互式學(xué)習(xí)環(huán)境中,老師的`作用和地位主要表現(xiàn)在培養(yǎng)學(xué)生掌握信息處理工具的方法和分析問題、解決問題的能力上。
其次,運用多媒體可以優(yōu)化教學(xué)設(shè)計,有利于呈現(xiàn)過程。
傳統(tǒng)的數(shù)學(xué)教學(xué),僅借助一塊黑板,一支粉筆、一本書、一張嘴,如此一節(jié)課下來,不僅教師累得夠嗆,學(xué)生也不輕松,易產(chǎn)生疲勞感甚至厭煩情緒,使得課堂教學(xué)信息傳遞結(jié)構(gòu)效率較低。而通過多媒體教學(xué),可以為教學(xué)提供強大的情景資源,能展示知識發(fā)生的過程,注重學(xué)生思維能力的培養(yǎng),多媒體課件采用動態(tài)圖像演示,具有較強的刺激作用,有助于理解概念的本質(zhì)特征,促進學(xué)生在原有的認(rèn)知基礎(chǔ)上,形成新的認(rèn)知結(jié)構(gòu)。例如這次上課,我制作了幾何畫板動畫,學(xué)生可以自己通過變化圖形,得到直角三角形三邊的關(guān)系,這要比直接上課舉例證明更生動,印象更深刻,也更具有說服性。
最后,多媒體教學(xué)也有助于提高教師的業(yè)務(wù)水平和計算機使用能力。
教師要上好一節(jié)數(shù)學(xué)課,必須要認(rèn)真的備課,需要查閱大量的資料,獲取很多信息,去優(yōu)化教學(xué)效果。龐大的書庫也只有有限的資源,況且還要找,要去翻。而網(wǎng)絡(luò)為教師提供了無窮無盡的教學(xué)資源,為廣大教師開展教學(xué)活動開辟了一條捷徑,大大節(jié)省了教師的備課時間。我們可以在網(wǎng)上下載到很多有助于自己教學(xué)的資料,包括教學(xué)課件和試卷等。通過網(wǎng)絡(luò),我們還可以學(xué)習(xí)到先進的教學(xué)思想、教學(xué)理念、教學(xué)方法。經(jīng)常將多媒體信息技術(shù)運用到課堂教學(xué)的教師,他的教學(xué)方法應(yīng)該總能走到前列。而且在教學(xué)中使用多媒體,要求教師有相當(dāng)?shù)挠嬎銠C使用能力,也是對我們現(xiàn)代年輕教師個人文化素質(zhì)提高的鍛煉。
當(dāng)然,網(wǎng)絡(luò)在上課時,也有一些不方便之處需要去解決。例如數(shù)學(xué)講究敘理過程的書寫。但是學(xué)生的打字輸入技能還不能滿足,因此網(wǎng)絡(luò)課的習(xí)題都是以填空或者選擇為主,書寫的鍛煉還是要靠紙幣去完成。可是,事在人為,任何事情都是可以解決的。我想在科技發(fā)展迅速的今天,很快就有新技術(shù)去解決這些問題。作為年輕教師,我們要敢于挑戰(zhàn)和嘗試,在教學(xué)中學(xué)習(xí),不斷提高自身的業(yè)務(wù)水平。
勾股定理反思6
本節(jié)課主要通過勾股定理的證明探索,使學(xué)生進一步理解和掌握勾股定理。通過利用質(zhì)疑、拼圖觀察、思考、猜想、推理論證這一過程,培養(yǎng)學(xué)生探求未知數(shù)學(xué)知識的能力和方法,培養(yǎng)學(xué)生求異思維能力、認(rèn)知能力、觀察能力和獨立實踐能力。學(xué)生獨立或分組進行拼圖實驗,教師組織學(xué)生在實驗過程中發(fā)現(xiàn)的有價值的實驗結(jié)果進行交流和展示。本節(jié)課的過程由激趣、質(zhì)疑、實驗、求異、探索、交流、延伸組成。
本節(jié)課的成功之處:
1、創(chuàng)設(shè)情景,實例導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情。
2、由于實現(xiàn)了教師角色的轉(zhuǎn)變,教法的創(chuàng)新,師生的平等,氣氛的活躍,學(xué)生積極參加。
3、面向全體學(xué)生,以人為本的教育理念落實到位。整節(jié)課都是學(xué)生自主實驗、自主探索,自主完成由形到數(shù)的轉(zhuǎn)化。學(xué)生勇于上講臺展示研究成果,教師只是起到組織、引導(dǎo)作用。
4、通過學(xué)生動手實驗,上臺發(fā)言,展示成果,體驗了成功的喜悅。學(xué)生的自信心得到培養(yǎng),個性得到張揚。通過當(dāng)場展示,讓學(xué)生體會到動手實踐在解決數(shù)學(xué)問題中的重要性,同時也讓學(xué)生體會到用面積來驗證公式的直觀性、普遍性。
5、學(xué)生的研究成果極大地豐富了學(xué)生對勾股定理的證明的認(rèn)識,學(xué)生從中獲得利用已知的知識探求數(shù)學(xué)知識的能力和方法。這對學(xué)生今后的學(xué)習(xí)和將來的發(fā)展是大有裨益的。同時驗證勾股定理的證明的探究,使學(xué)生形成一種等積代換的思想,為今后的學(xué)習(xí)奠定基礎(chǔ)。
本節(jié)課的不足之處及改進思路:
1、小部分能力基礎(chǔ)和能力都比較差的學(xué)生在探索過程中無所事事,因此教師應(yīng)該在課前對不同層次的學(xué)生提出不同的.要求,讓每個學(xué)生多清楚地知道這節(jié)課自己的任務(wù)是什么。
2、本節(jié)課拼圖驗證的方法是以前學(xué)生很少接觸的,所以在探索過程中很多學(xué)生都顯得有些吃力。所以教師在講方法一時,應(yīng)該先介紹這種證明方法以及思路,讓學(xué)生模仿第一種方法的基礎(chǔ)上,能輕松地總結(jié)出第二種方法,從而產(chǎn)生去探索更多方法的興趣和動力,有利于學(xué)生的數(shù)學(xué)思維的提升。
3、對學(xué)生的人文教育和愛國教育不夠。很多學(xué)生在探索過程中遇到困難時,選擇放棄或等別人的答案。教師此時應(yīng)該注意引導(dǎo)學(xué)生要勇于克服困難,主動進行探索,提高了自身的推理能力和創(chuàng)新精神。同時教師也要不斷滲透愛國教育,培養(yǎng)學(xué)生的民族自豪感和愛國熱情。
在我們的數(shù)學(xué)教學(xué)中,活動課是不可忽視的內(nèi)容。在這個探索的過程中,學(xué)生絕大多數(shù)是不會創(chuàng)造或發(fā)明什么的,這是一個素質(zhì)的表現(xiàn)和培養(yǎng)過程。學(xué)生得到什么結(jié)果是次要的,重要的是使學(xué)生的素質(zhì)和能力得到培養(yǎng)。這是中學(xué)數(shù)學(xué)活動課的價值取向。
勾股定理反思7
我用了4課時講授了八年級下冊數(shù)學(xué)人教版的第十八章第一節(jié)勾股定理:
第一課時我主要講授的是勾股定理的探究和驗證,并舉例計算有關(guān)直角三角形已知兩邊長求第三邊的問題;
第二課時我主要講授了各種類型的有關(guān)直角三角形邊長或者面積相關(guān)問題;
第三課時講授了如何用勾股定理解決生活中的實際問題;
第四課時主要講授了怎樣在數(shù)軸上找出無理數(shù)對應(yīng)的點。
這4個課時我采用的教學(xué)方法是:引導(dǎo)—探究—發(fā)現(xiàn)法;為學(xué)生設(shè)計的學(xué)習(xí)方法是:自主探究與合作交流相結(jié)合。
第一課時的課堂教學(xué)中,我始終注意了調(diào)動學(xué)生的積極性。
興趣是最好的老師,所以無論是引入、拼圖,還是歷史回顧,我都注意去調(diào)動學(xué)生,讓學(xué)生滿懷激情地投入到活動中。因此,課堂效率較高。勾股定理作為“千古第一定理”,其魅力在于其歷史價值和應(yīng)用價值,因此我注意充分挖掘了其內(nèi)涵。特別是讓學(xué)生事先進行調(diào)查,再在課堂上進行展示,這極大地調(diào)動了學(xué)生,既加深了對勾股定理文化的理解,又培養(yǎng)了他們收集、整理資料的能力。勾股定理的驗證既是本節(jié)課的重點,也是本節(jié)課的難點,為了突破這一難點,我設(shè)計了拼圖活動,并自制精巧的課件讓學(xué)生從形上感知,再層層設(shè)問,從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點。
第二課時我依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,
在探索勾股定理的整個過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進行主動學(xué)習(xí)。教師只在學(xué)生遇到困難時,進行引導(dǎo)或組織學(xué)生通過討論來突破難點。為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進而得到勾股定理.
第三課時在課堂教學(xué)中,始終注重學(xué)生的.自主探究。
由實例引入,激發(fā)了學(xué)生的學(xué)習(xí)興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高,切實體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人的新課程理念。對于拼圖驗證,學(xué)生還沒有接觸過,所以,教學(xué)中,教師給予了學(xué)生適當(dāng)?shù)闹笇?dǎo)與鼓勵,教師較好地充當(dāng)了學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。另外教會學(xué)生思維,培養(yǎng)學(xué)生多種能力。課前查資料,培養(yǎng)了學(xué)生的自學(xué)能力及歸類總結(jié)能力;課上的探究培養(yǎng)了學(xué)生的動手動腦的能力、觀察能力、猜想歸納總結(jié)的能力、合作交流的能力……但本節(jié)課拼圖驗證的方法以前學(xué)生沒接觸過,稍嫌吃力。因此,在今后的教學(xué)中還需要進一步關(guān)注學(xué)生的實驗操作活動,提高其實踐能力。
第四課時我另外向?qū)W生介紹了勾股定理的證明方法:
以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補,來證明代數(shù)式之間的恒等關(guān)系;以歐幾里得的證明方法為代表,運用歐氏幾何的基本定理進行證明;以劉徽的“青朱出入圖”為代表,“無字證明”。
總的來看,學(xué)生掌握的情況比較好,都能夠達到預(yù)期要求,但介于有關(guān)勾股定理的類型題很多,不能一一為學(xué)生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類型題加入本教材。
勾股定理反思8
勾股定理的探索和證明蘊含豐富的數(shù)學(xué)思想和研究方法,是培養(yǎng)學(xué)生思維品質(zhì)的載體。它對數(shù)學(xué)發(fā)展具有重要作用。勾股定理是一壇陳年佳釀,品之芬芳,余味無窮,以簡潔優(yōu)美的形式,豐富深刻的內(nèi)涵刻畫了自然界和諧統(tǒng)一關(guān)系,是數(shù)形結(jié)合的優(yōu)美典范。
教學(xué)中我以教師為主導(dǎo),以學(xué)生為主體,以知識為載體,以培養(yǎng)能力為重點。為學(xué)生創(chuàng)設(shè)“做數(shù)學(xué)、玩數(shù)學(xué)”的教學(xué)情境,讓學(xué)生從“學(xué)會”到“會學(xué)”,從“會學(xué)”到“樂學(xué)”。
1、查資料
我讓學(xué)生課前查閱有關(guān)勾股定理資料,學(xué)生對勾股定理歷史背景有初步了解,學(xué)生充滿自信迎接新知識《勾股定理》學(xué)習(xí)的挑戰(zhàn)。
學(xué)生查得資料:世界許多科學(xué)家尋找“外星人”。1820年,德國數(shù)學(xué)家高斯提出,在西伯利亞森林伐出直角三角形空地,在空地種上麥子,以三角形三邊為邊種上三片正方形松樹林,如果有外星人路過地球附近,看到這個巨大數(shù)學(xué)圖形,便知道:這個星球上有智慧生命。我國數(shù)學(xué)家華羅庚提出:要溝通兩個不同星球的信息交往,最好利用太空飛船帶上這個圖形,并發(fā)射到太空中去。
2、講故事
畢達哥拉斯是古希臘數(shù)學(xué)家。相傳2500年前,畢達哥拉斯在朋友家做客,發(fā)現(xiàn)朋友家用地磚鋪成地面反映了直角三角形三邊的數(shù)量關(guān)系。
我講畢達哥拉斯故事,提出問題。學(xué)生獨立思考,提出猜想。我配合演示,使問題形象、具體。教學(xué)活動從“數(shù)小方格”開始,起點低、趣味性濃。學(xué)生在偉人故事中進行數(shù)學(xué)問題的討論和探索。平淡無奇現(xiàn)象中隱藏深刻道理。
3、提問題
“問題是思維的起點”,一段生動有趣的動畫,點燃學(xué)生求知欲,以景激情,以情激思,引領(lǐng)學(xué)生進入學(xué)習(xí)情境,學(xué)生帶著問題進課堂。
例如:一架長為10m的梯子AB斜靠在墻上,若梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑2m ,那么它的底端是否也滑動2m ?
盡管學(xué)生講的不完全正確,但培養(yǎng)了學(xué)生運用數(shù)學(xué)語言進行抽象、概括的能力,學(xué)生經(jīng)歷了應(yīng)用勾股定理解決問題的思考過程,學(xué)生增長了知識,學(xué)生增長了智慧。
例如:《九章算術(shù)》記載有趣問題:有一個水池,水面是邊長為10尺的正方形,在水池的中央有一根新生蘆葦,它高出水面1尺,若把這根蘆葦拉向岸邊,它的.頂端恰好到達岸邊的水面,問這個水池深度和這根蘆葦長度各是多少?
我通過“著名問題”探究,讓學(xué)生了解勾股定理的古老與神奇。問題本身具有極大挑戰(zhàn)性,激發(fā)了學(xué)生強烈求知欲,激發(fā)了學(xué)生探究知識的愿望。學(xué)生討論交流,發(fā)現(xiàn)用代數(shù)觀點證明幾何問題的思路。我配以演示,分散了難點,培養(yǎng)了學(xué)生發(fā)散思維、探究數(shù)學(xué)問題的能力。
4、講證法
我拋磚引玉介紹趙爽弦圖,趙爽用幾何圖形截、割、拼、補證明代數(shù)恒等關(guān)系,具有嚴(yán)密性,直觀性,是中國古代以形證數(shù)、形數(shù)統(tǒng)一的典范。趙爽指出:四個全等直角三角形拼成一個中空的正方形,大正方形面積等于小正方形面積與4個三角形面積和。 “趙爽弦圖”表現(xiàn)了我國古代人對數(shù)學(xué)的鉆研精神和聰明才智,它是我國數(shù)學(xué)的驕傲。這個圖案被選為20xx年北京召開的國際數(shù)學(xué)家大會會徽。
隨后展示了美國總統(tǒng)證法。1876年4月1日,美國伽菲爾德在《新英格蘭教育日志》發(fā)表勾股定理的證法。1881年,伽菲爾德就任美國總統(tǒng),為了紀(jì)念他直觀、簡捷、易懂、明了的證明,這一證法被稱為“總統(tǒng)”證法。
我感覺學(xué)生是小小發(fā)明家。學(xué)生在建構(gòu)知識的同時,欣賞作品享受成功的喜悅。
5、巧設(shè)計
練習(xí)設(shè)計我立足鞏固,著眼發(fā)展,兼顧差異,滿足學(xué)生渴望發(fā)展要求。練習(xí)有基礎(chǔ)訓(xùn)練,變式訓(xùn)練,中考試題,引出勾股樹,學(xué)生驚嘆奇妙的數(shù)學(xué)美。課內(nèi)知識向課外知識延伸,打開了學(xué)生思路,給學(xué)生提供了廣闊空間。數(shù)學(xué)教學(xué)變得生機勃勃,學(xué)生喜歡數(shù)學(xué),熱愛數(shù)學(xué)。
我讓學(xué)生講解搜集資料,豐富了學(xué)生背景知識,體現(xiàn)了自主學(xué)習(xí)方式。我對學(xué)生進行愛國主義教育,激發(fā)了學(xué)生民族自豪感和奮發(fā)向上學(xué)習(xí)精神。我讓學(xué)生欣賞豐富多彩的數(shù)學(xué)文化,展示五彩斑斕的文化背景,激發(fā)了學(xué)生的愛國熱情。
6、善總結(jié)
課堂小結(jié)是對教學(xué)內(nèi)容的回顧,是對數(shù)學(xué)思想、方法的總結(jié)。我強調(diào)重點內(nèi)容,注重知識體系的形成,培養(yǎng)了學(xué)生反思習(xí)慣。
我還想對同學(xué)們說:
牛頓——從蘋果落地最終確立了萬有引力定律
我們——從朝夕相處的三角板發(fā)現(xiàn)了勾股定理
雖然兩者尚不可同日而語
但探索和發(fā)現(xiàn)——終有價值
也許就在身邊
也許就在眼前
還隱藏著無窮的“萬有引力定律”和“勾股定理”……
祝愿同學(xué)們——
修得一個用數(shù)學(xué)思維思考世界的頭腦
練就一雙用數(shù)學(xué)視角觀察世界的眼睛
開啟新的探索——
發(fā)現(xiàn)平凡中的不平凡之謎……
勾股定理反思9
勾股定理的探索和證明蘊含著豐富的數(shù)學(xué)思想和數(shù)學(xué)方法,是培養(yǎng)學(xué)生良好思維品質(zhì)的最佳載體。它以簡潔優(yōu)美的圖形結(jié)構(gòu),豐富深刻的內(nèi)涵刻畫了自然界的和諧統(tǒng)一的關(guān)系,是數(shù)形結(jié)合的完美典范。著名數(shù)學(xué)家華羅庚就曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言。為讓學(xué)生通過對這節(jié)課的學(xué)習(xí)得到更好的歷練,在教學(xué)時,特別注重從以下幾個方面入手:
一、注重知識的自然生發(fā)。
傳統(tǒng)的教學(xué)中,教師往往喜歡壓縮理論傳授過程,用充足的時間做練習(xí),以題代講,搞題海戰(zhàn)術(shù)。但從學(xué)生的發(fā)展來著,如果壓縮數(shù)學(xué)知識的形成過程,不講究知識的自然生發(fā),學(xué)生獲取知識的過程是被動的,形成的體系也是孤立的,長此以往,學(xué)生必將錯過或失去思維發(fā)展和能力提高的機遇。在這節(jié)課上,不刻意追求所謂的進度,更沒有直接給出勾股定理,而是組織學(xué)生開展畫一畫、看一看、想一想、猜一猜、拼一拼的活動,學(xué)生在活動思考、交流、展示中,逐漸的形成了對知識的自我認(rèn)識和自我感悟。這樣做不僅能幫助學(xué)生牢固掌握勾股定理,更重要的是使學(xué)生體會用自己所學(xué)的舊知識而獲取新知識過程,使他們獲得成功的喜悅,增強了學(xué)生主動性,同時他們的思維能力在知識自然形成的過程中不斷發(fā)展。
二、注重數(shù)學(xué)課上的操作性學(xué)習(xí)
操作性學(xué)習(xí)是自主探究性學(xué)習(xí)有效途徑之一,學(xué)生通過在實踐活動中的感受和體驗,有利于幫助學(xué)生理解和掌握抽象的數(shù)學(xué)知識。在這節(jié)課上,首先讓學(xué)生動手畫直角三角形,得出研究題材,然后又讓學(xué)生利用四個直角三角形拼一拼,驗證猜想。這樣充分的調(diào)動了學(xué)生的手、口、腦等多種感官參與數(shù)學(xué)學(xué)習(xí)活動,既享受了操作的樂趣,又培養(yǎng)了學(xué)生的動手能力,加深了對知識的理解。
三、注重問題設(shè)計的開放性
課堂教學(xué)是教師組織、引導(dǎo)、參與和學(xué)生自主、合作、探究學(xué)習(xí)的雙邊活動。這其中教師的“引導(dǎo)”起著關(guān)鍵作用。這里的“引導(dǎo)”,很大程度上靠設(shè)疑提問來實現(xiàn)。在教學(xué)實踐中,問題設(shè)計要具有開放性。因為開放性問題更有利于培養(yǎng)學(xué)生的創(chuàng)造性思維、體現(xiàn)學(xué)生的主體意識和個性差異。本節(jié)課在設(shè)計涂鴉直角三角形時,安排學(xué)生在方格紙上任意涂鴉一個直角三角形;在設(shè)計拼圖驗證環(huán)節(jié)時,安排學(xué)生任意拼出一個正方形或直角梯形,有意沒指定畫一個具體邊長的直角三角形和正方形,就是不想對學(xué)生的思維給出太多的限制條件,給出更多的'想象和創(chuàng)造空間。雖然探究的時間會更長,但這更符合實際知識的產(chǎn)生環(huán)境,學(xué)生只有在這樣的環(huán)境下進行創(chuàng)造、發(fā)現(xiàn)和磨練,能力素養(yǎng)才會得到更有效的歷練。
四、注重讓學(xué)生經(jīng)歷完整的數(shù)學(xué)知識的發(fā)現(xiàn)過程。
新《數(shù)學(xué)課程標(biāo)準(zhǔn)》在關(guān)于課程目標(biāo)的闡述中,首次大量使用了"經(jīng)歷(感受)、體驗(體會)、探索"等刻畫數(shù)學(xué)活動水平的過程性目標(biāo)動詞,就是要求在數(shù)學(xué)學(xué)習(xí)的過程中,讓學(xué)生經(jīng)歷知識與技能形成與鞏固過程,經(jīng)歷數(shù)學(xué)思維的發(fā)展過程,經(jīng)歷應(yīng)用數(shù)學(xué)能力解決問題的過程,從而形成積極的數(shù)學(xué)情感與態(tài)度。教學(xué)從學(xué)生感興趣的涂鴉開始,再經(jīng)歷觀察、分析、猜想、驗證的全過程,讓學(xué)生充分的經(jīng)歷了完整的數(shù)學(xué)知識的發(fā)現(xiàn)過程,使學(xué)生獲得對數(shù)學(xué)理解的同時,在知識技能、思維能力以及情感態(tài)度等多方面都得到了進步和發(fā)展。
如果有機會再上這節(jié)課,我想我會投入更多的精力對學(xué)生可能會給出的答案進行預(yù)想,以便在課堂上給予學(xué)生更多的啟迪,讓他們走的更遠。一堂課,雖已結(jié)束,但對于生命課堂的領(lǐng)悟這條路,還有很長的路要走,我將繼續(xù)上下求索,做學(xué)生更好的支點。
勾股定理反思10
新課程改革要求我們:將數(shù)學(xué)教學(xué)置身于學(xué)生自主探究與合作交流的數(shù)學(xué)活動中;將知識的獲取與能力的培養(yǎng)置身于學(xué)生形式各異的探索經(jīng)歷中;關(guān)注學(xué)生探索過程中的情感體驗,并發(fā)展實踐能力及創(chuàng)新意識。為學(xué)生的終身學(xué)習(xí)及可持續(xù)發(fā)展奠定堅實的基礎(chǔ)。
為此我在教學(xué)設(shè)計中注重了以下幾點:
一、讓學(xué)生主動想學(xué)
上這節(jié)課前一個星期教師布置給學(xué)生任務(wù):查有關(guān)勾股定理的資料(可上網(wǎng)查,也可查閱報刊、書籍)。提前兩三天由幾位學(xué)生匯總(教師可適當(dāng)指導(dǎo))。這樣可使學(xué)生在上這節(jié)課前就對勾股定理歷史背景有全面的理解,從而使學(xué)生認(rèn)識到勾股定理的重要性,學(xué)習(xí)勾股定理是非常必要的,激發(fā)學(xué)生的學(xué)習(xí)興趣,對學(xué)生也是一次愛國主義教育,培養(yǎng)民族自豪感,激勵他們奮發(fā)向上。同時培養(yǎng)學(xué)生的自學(xué)能力及歸類總結(jié)能力。
二、在課堂教學(xué)中,始終注重學(xué)生的自主探究
首先,創(chuàng)設(shè)情境,由實例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高。體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,人人學(xué)有價值的`數(shù)學(xué),人人都能獲得必需的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。
對于拼圖驗證,學(xué)生還沒有接觸過,所以在教學(xué)中教師給予學(xué)生適當(dāng)指導(dǎo)與鼓勵。充分體現(xiàn)了教師是學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。
三、教會學(xué)生思維,培養(yǎng)學(xué)生多種能力
課前查資料,培養(yǎng)學(xué)生的自學(xué)能力及歸類總結(jié)能力;課上的探究培養(yǎng)學(xué)生的動手動腦的能力、觀察能力、猜想歸納總結(jié)的能力、合作交流的能力……
四、注重了數(shù)學(xué)應(yīng)用意識的培養(yǎng)
數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。因此從實例引入,最后通過定理解決引例中的問題,并在定理的應(yīng)用中,讓學(xué)生舉生活中的例子,充分體現(xiàn)了數(shù)學(xué)的應(yīng)用價值。
整節(jié)課都是在生生互動、師生互動的和諧氣氛中進行的,在教師的鼓勵、引導(dǎo)下學(xué)生進行了自主學(xué)習(xí)。學(xué)生上講臺表達自己的思路、解法,體驗了數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)了細(xì)心觀察、認(rèn)真思考的態(tài)度。但本節(jié)課拼圖驗證的方法以前學(xué)生沒接觸過,稍嫌吃力。另在舉勾股定理在生活中的例子時,學(xué)生思路不夠開闊。以后要多培養(yǎng)學(xué)生實驗操作能力及應(yīng)用拓展能力,使學(xué)生思路更開闊。
勾股定理反思11
新課程改革要求我們:將數(shù)學(xué)教學(xué)置身于學(xué)生自主探究與合作交流的數(shù)學(xué)活動中,將知識的獲取與能力的培養(yǎng)置身于學(xué)生形式各異的探索經(jīng)歷中,關(guān)注學(xué)生探索過程中的情感體驗,并發(fā)展實踐能力及創(chuàng)新意識,為學(xué)生的終身學(xué)習(xí)及可持續(xù)發(fā)展奠定堅實的基礎(chǔ)。
首先講解勾股定理的重要性,讓學(xué)生明白勾股定理是中學(xué)數(shù)學(xué)幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ)。它緊密聯(lián)系了數(shù)學(xué)中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+ b2= c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位,從而激發(fā)學(xué)生的求知欲。
一、精心編制數(shù)學(xué)教學(xué)目標(biāo)知識與技能:1.讓學(xué)生在經(jīng)歷探索定理的過程中,理解并掌握勾股定理的內(nèi)容;2.掌握勾股定理的證明及介紹相關(guān)史料;3.學(xué)生能對勾股定理進行簡單計算。
過程與方法:在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,發(fā)展合情推理能力,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
情感態(tài)度與價值觀:體會數(shù)學(xué)文化的價值,通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。
二、優(yōu)化數(shù)學(xué)教學(xué)內(nèi)容的呈現(xiàn)方式(一)創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生思考,激發(fā)學(xué)習(xí)興趣。
1.2002年國際數(shù)學(xué)家大會在北京舉行的意義。
2.電腦顯示:ICM20xx會標(biāo)。
3. 會標(biāo)設(shè)計與趙爽弦圖。
4. 趙爽弦圖與《周髀算經(jīng)》中的“商高問題”。
。ǘ┩ㄟ^學(xué)生動手操作,觀察分析,實踐猜想,合作交流,人人參與活動,體驗并感悟“圖形”和“數(shù)量”之間的相互聯(lián)系。
1.觀察網(wǎng)格上的圖形:分別以直角三角形的三邊向外作正方形,三個正方形的面積關(guān)系。再利用幾何畫板演示,引導(dǎo)學(xué)生去觀察,大膽的猜測。
2.引導(dǎo)學(xué)生將正方形的面積與三角形的邊長聯(lián)系起來,讓學(xué)生進行分析、歸納,鼓勵學(xué)生用用語言表達自己的發(fā)現(xiàn)。采取“個人思考——小組活動——全班交流”的形式。
3.讓學(xué)生自己任畫一個直角三角形,再次驗證自己的發(fā)現(xiàn),在此基礎(chǔ)上得到直角三角形三邊的關(guān)系。
4.電腦演示:銳角三角形、鈍角三角形三邊的平方關(guān)系,從而進一步認(rèn)識直角三角形三邊的'關(guān)系。
5.通過幾個練習(xí),了解直角三角形三邊關(guān)系的作用。
。ㄈ├^續(xù)動手操作實踐,思考探究,拼圖驗證猜想。
1.學(xué)生動手用準(zhǔn)備好的四個直角三角形拼弦圖。
2.利用弦圖來驗證勾股定理。采取“個人思考——小組活動——全班交流”的形式。
(四)拓展延伸,發(fā)揮作為千古第一定理的文化價值。
1.簡單介紹勾股定理的文化價值。
2.閱讀:勾股定理成為地球人與“外星人”聯(lián)系的“使者”。
3.電腦演示:欣賞勾股樹。
4.推薦進一步課外學(xué)習(xí)的網(wǎng)址。
5.與課頭的“ICM20xx”在中國舉行的意義首尾呼應(yīng),進一步激發(fā)學(xué)生追求遠大目標(biāo),奮發(fā)學(xué)習(xí)。
本節(jié)課開始我利用了導(dǎo)語中的在北京召開的20xx年國際數(shù)學(xué)家大會的會標(biāo),其圖案為“弦圖”,激發(fā)學(xué)生的興趣。同時出示勾股定理的圖形,讓學(xué)生猜想直角三角形三邊之間的關(guān)系。然后利用正方形網(wǎng)格驗證猜想的正確性,還利用教具在黑板上拼圖,啟發(fā)學(xué)生用面積法得出a2+ b2= c2在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進行探索,然后同學(xué)進行討論,最后上臺演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動。然后老師利用多種證法讓學(xué)生參與勾股定理的探索過程,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論,使得這課的重難點輕易地突破,大大提高教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。
勾股定理反思12
我用了4課時講授了八年級下冊數(shù)學(xué)人教版的第十八章第一節(jié)勾股定理,第一課時我主要講授的是勾股定理的探究和驗證,并舉例計算有關(guān)直角三角形已知兩邊長求第三邊的問題;第二課時我主要講授了各種類型的有關(guān)直角三角形邊長或者面積相關(guān)問題;第三課時講授了如何用勾股定理解決生活中的實際問題;第四課時主要講授了怎樣在數(shù)軸上找出無理數(shù)對應(yīng)的點。這4個課時我采用的教學(xué)方法是:引導(dǎo)—探究—發(fā)現(xiàn)法;為學(xué)生設(shè)計的學(xué)習(xí)方法是:自主探究與合作交流相結(jié)合。
第一課時的課堂教學(xué)中,我始終注意了調(diào)動學(xué)生的積極性。興趣是最好的老師,所以無論是引入、拼圖,還是歷史回顧,我都注意去調(diào)動學(xué)生,讓學(xué)生滿懷激情地投入到活動中。因此,課堂效率較高。勾股定理作為“千古第一定理”,其魅力在于其歷史價值和應(yīng)用價值,因此我注意充分挖掘了其內(nèi)涵。特別是讓學(xué)生事先進行調(diào)查,再在課堂上進行展示,這極大地調(diào)動了學(xué)生,既加深了對勾股定理文化的理解,又培養(yǎng)了他們收集、整理資料的能力。勾股定理的驗證既是本節(jié)課的重點,也是本節(jié)課的難點,為了突破這一難點,我設(shè)計了拼圖活動,并自制精巧的課件讓學(xué)生從形上感知,再層層設(shè)問,從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點。
第二課時我依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進行主動學(xué)習(xí)。教師只在學(xué)生遇到困難時,進行引導(dǎo)或組織學(xué)生通過討論來突破難點。為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進而得到勾股定理。
第三課時在課堂教學(xué)中,始終注重學(xué)生的自主探究,由實例引入,激發(fā)了學(xué)生的學(xué)習(xí)興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高,切實體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的'主人的新課程理念。對于拼圖驗證,學(xué)生還沒有接觸過,所以,教學(xué)中,教師給予了學(xué)生適當(dāng)?shù)闹笇?dǎo)與鼓勵,教師較好地充當(dāng)了學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。另外教會學(xué)生思維,培養(yǎng)學(xué)生多種能力。課前查資料,培養(yǎng)了學(xué)生的自學(xué)能力及歸類總結(jié)能力;課上的探究培養(yǎng)了學(xué)生的動手動腦的能力、觀察能力、猜想歸納總結(jié)的能力、合作交流的能力……但本節(jié)課拼圖驗證的方法以前學(xué)生沒接觸過,稍嫌吃力。因此,在今后的教學(xué)中還需要進一步關(guān)注學(xué)生的實驗操作活動,提高其實踐能力。
第四課時我另外向?qū)W生介紹了勾股定理的證明方法:以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補,來證明代數(shù)式之間的恒等關(guān)系;以歐幾里得的證明方法為代表,運用歐氏幾何的基本定理進行證明;以劉徽的“青朱出入圖”為代表,“無字證明”。
總的來看,學(xué)生掌握的情況比較好,都能夠達到預(yù)期要求,但介于有關(guān)勾股定理的類型題很多,不能一一為學(xué)生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類型題加入本教材。
勾股定理反思13
勾股定理是數(shù)學(xué)中最重要的定理之一,它揭示了直角三角形中三條之間的數(shù)量關(guān)系,由勾股定理的證明能夠把直角三角形中“形”的特征轉(zhuǎn)化為“數(shù)”的關(guān)系,因此它可以解決直角三角形中的許多計算問題。勾股定理不僅體現(xiàn)出完美的“形數(shù)統(tǒng)一”思想,更因為其超過四百多種的證明方法,使其成為數(shù)學(xué)上最引人注目的定理之一。
對學(xué)生來說,用面積的“割補”證明一個定理應(yīng)該是比較陌生的,尤其覺得不像證明,因此,勾股定理的證明是一個難點。但是,初二學(xué)生經(jīng)過一年的幾何學(xué)習(xí),已具有初步的觀察和邏輯推理能力,他們更希望獨立思考和發(fā)表自己的見解。因此,我創(chuàng)設(shè)一種便于學(xué)生觀察、思考、交流的教學(xué)情境,從生活實例和趙爽弦圖引入,共用了五張幻燈片三個生活實例,激發(fā)了學(xué)生學(xué)習(xí)興趣,培育他們學(xué)習(xí)的熱情。在本節(jié)課的教學(xué)中我做到了一下幾點:
一、從大量的生活實例和趙爽弦圖、歷史故事引入
通過欣賞20xx年在我國北京召開的國際數(shù)學(xué)家大會的會徽圖案,引出“趙爽弦圖”,讓學(xué)生了解我國古代輝煌的數(shù)學(xué)成就,引入課題。接下來,讓學(xué)生思考三個生活實例:啟發(fā)他們要想解決這些問題需要知道直角三角形三邊之間的關(guān)系,有通過講故事引起他們探究的熱情,故事內(nèi)容是:相傳25xx年前,畢達格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。
這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對學(xué)生進行了學(xué)習(xí)方法指導(dǎo)和解決問題能力的培養(yǎng)。
二、在課堂教學(xué)中,始終注重學(xué)生的自主探究
首先,創(chuàng)設(shè)情境,由實例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高。體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,人人學(xué)有價值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。對于拼圖驗證,學(xué)生還沒有接觸過,所以在教學(xué)中教師給予學(xué)生適當(dāng)指導(dǎo)與鼓勵。充分體現(xiàn)了教師是學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。
三、教會學(xué)生思維,培養(yǎng)學(xué)生多種能力
課前查資料,培養(yǎng)學(xué)生的自學(xué)能力及歸類總結(jié)能力;課上的探究培養(yǎng)學(xué)生的動手動腦的能力、觀察能力、猜想歸納總結(jié)的能力、合作交流的能力……
四、信息技術(shù)與學(xué)科的整合
在信息社會,信息技術(shù)與課程的整合必將帶來教育者的深刻變化。我充分地利用多媒體教學(xué),為學(xué)生創(chuàng)設(shè)了生動、直觀的現(xiàn)實情景,具有強列的吸引力,能激發(fā)學(xué)生的學(xué)習(xí)欲望。心理學(xué)專家研究表明:運動的圖形比靜止的圖形更能引起學(xué)生的注意力。在傳統(tǒng)教學(xué)中,用筆、尺和圓規(guī)在紙上或黑板上畫出的`圖形都是靜止圖形,同時圖形一旦畫出就被固定下來,也就是失去了一般性,所以其中的數(shù)學(xué)規(guī)律也被掩蓋了,呈現(xiàn)給學(xué)生的數(shù)學(xué)知識也只能停留在感性認(rèn)識上。本節(jié)課我通過Flash動畫演示結(jié)果和拼圖程以及呈現(xiàn)教學(xué)內(nèi)容。真正體現(xiàn)數(shù)學(xué)規(guī)律的應(yīng)用價值。把呈現(xiàn)給學(xué)生的數(shù)學(xué)知識從感性認(rèn)識提升到理性認(rèn)識,實現(xiàn)一種質(zhì)的飛躍。
五、注重了數(shù)學(xué)應(yīng)用意識的培養(yǎng)
數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。因此從實例引入,最后通過定理
解決引例中的問題,并在定理的應(yīng)用中,讓學(xué)生舉生活中的例子,充分體現(xiàn)了數(shù)學(xué)的應(yīng)用價值。
整節(jié)課都是在生生互動、師生互動的和諧氣氛中進行的,在教師的鼓勵、引導(dǎo)下學(xué)生進行了自主學(xué)習(xí)。學(xué)生上講臺表達自己的思路、解法,體驗了數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)了細(xì)心觀察、認(rèn)真思考的態(tài)度。但本節(jié)課拼圖驗證的方法以前學(xué)生沒接觸過,稍嫌吃力。另在舉勾股定理在生活中的例子時,學(xué)生思路不夠開闊。以后要多培養(yǎng)學(xué)生實驗操作能力及應(yīng)用拓展能力,使學(xué)生思路更開闊。
勾股定理反思14
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學(xué)家研究幾何是為了實用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:
本節(jié)課的教學(xué)目標(biāo)是:在掌握了勾股定理的基礎(chǔ)上,讓學(xué)生如何從三邊的關(guān)系來判定一個三角形是否為直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教學(xué)設(shè)計說明:本教教學(xué)設(shè)計是圍繞勾股定理的逆定理的證明與應(yīng)用來展開,結(jié)合新課標(biāo)的要求,根據(jù)我班學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位為了達到本節(jié)課的教學(xué)目標(biāo),我做了以下設(shè)計(也是成功之處):
一、創(chuàng)設(shè)情境,提出猜想達到直觀性的教學(xué)要求。讓幾個學(xué)生要全班同學(xué)前面做一個“數(shù)學(xué)實驗”,三條分別為:3,4,5的三角形是一個直角三角形。第二步驟是讓學(xué)生畫已知三邊的一定長度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關(guān)系條件,同時,引導(dǎo)學(xué)生從特殊到一般提出猜想。
二、將教學(xué)內(nèi)容精簡化.考慮到我所教班級的學(xué)生認(rèn)識水平,做了如下教學(xué)設(shè)計:⑴將教學(xué)目標(biāo)定為讓學(xué)生掌握勾股定理的逆定理.以及逆定理的應(yīng)用,而對于本課中逆定理的證明.以及其探究都放在一下節(jié)課再進行講解.⑵對于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡單化.本節(jié)課也不詳細(xì)講.本節(jié)課的的重點放在掌握勾股定理的逆定理,及其應(yīng)用.從課堂效果來看,這樣的教學(xué)設(shè)計是合理的,學(xué)生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。
三、應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運用所學(xué)知識解決相應(yīng)問題,提高學(xué)生的分析解題能力,基于對我班的學(xué)情分析,為了讓學(xué)生都能動起手做,學(xué)案的設(shè)計上做了很多腳手架,目的就是讓學(xué)生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設(shè)置對我們的中下水平的學(xué)生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒有的話,這部分學(xué)生對一些基本的題都會束手無策.
四、實行分層教學(xué),讓不同水平的學(xué)生在同一課堂都能學(xué)好,為此,我設(shè)計了三個層次的問題,以達到分層教學(xué)目標(biāo):第一層次是讓學(xué)生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調(diào)已知三角形三邊長或三邊關(guān)系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的.計算問題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會分割的思想.設(shè)計的題型前后呼應(yīng),使知識有序推進,有助于學(xué)生的理解和掌握;讓學(xué)生通過合作、交流、反思、感悟的過程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。將目標(biāo)分層后,我設(shè)計的學(xué)案里的題目也是相應(yīng)的進行了分層設(shè)計,滿足不同層次的學(xué)生的做題要求,達到鞏固課堂知識的目的。最后,布置作業(yè),也是分層布置的,分為三層,對應(yīng)不同的學(xué)生,讓他們的作業(yè)都在他們的能力范圍。
誠然,這節(jié)課也存在許多不足第一、新課導(dǎo)入部分:存在如下值得改進的地方:①復(fù)習(xí)舊知部分,復(fù)習(xí)勾股定理的內(nèi)容應(yīng)用了填空的形式,這個形式不是最佳的.因為學(xué)生書寫勾股定理耗時,既使書寫出來,復(fù)習(xí)效果也不太好。最佳的應(yīng)該是以簡單的題目形式來復(fù)習(xí)勾股定理.這樣快而有效;②如何從復(fù)習(xí)勾股定理中巧妙的切入本課的主題,過渡語的設(shè)置,應(yīng)該將過渡語言簡單明了,可設(shè)計成:怎么從邊的關(guān)系來判斷一個三角形是直角三角形呢?這就是本節(jié)課要學(xué)習(xí)的內(nèi)容.③導(dǎo)入部分的課時分配估計不足,顯得冗長,也一定程度上造成后面的教學(xué)時間緊張。應(yīng)該對導(dǎo)入部分的時效再進行分析簡化。
第二存在的問題是:
。1)腳手架設(shè)計的太多,本節(jié)課有一定的腳手架是合適的,太多了,反而不利于學(xué)生自己的書寫規(guī)范性,過程的掌握等,
。2)練習(xí)題題量過大,本節(jié)課的練習(xí)題大部分都是重復(fù)一些基本的操作,沒有必要太多簡單的題目,可以適當(dāng)去掉.對于數(shù)字的設(shè)計可以更加科學(xué)化一點,應(yīng)該讓學(xué)生方便運算和節(jié)省時間.此外,對于層次較要的同學(xué)來說,應(yīng)該設(shè)計更多一點綜合性的題目。適當(dāng)?shù)脑黾右恍┨岣哳},以滿足這一層次的學(xué)生的學(xué)習(xí)練習(xí)要求.
在備每一節(jié)課中,對于課堂的每一個細(xì)節(jié),第一刻鐘,第一個教學(xué)設(shè)計的思考都無不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個過程是一種全新的收獲,也是全新的開始,讓自己能夠重新起步,向前。
勾股定理反思15
《勾股定理》一章檢測結(jié)果出來了,學(xué)生考績很不理想,很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉(zhuǎn)反側(cè)。
一是沒有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學(xué)直接根據(jù)勾股定理得:AB=5。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。
二是沒有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長分別是4c和5c,求第三邊的長。很多同學(xué)可能是受勾股數(shù)“3,4,5”的影響,錯把結(jié)果寫成了3c,其實這里的第三邊是斜邊.
三是缺乏分類思想,考慮問題不全面,導(dǎo)致解答錯誤。例如:已知直角三角形兩邊長分別是1、4,求第三邊的長。這里的第三邊有可能是斜邊也有可能是直角邊,所以結(jié)果應(yīng)該有兩個,但好多同學(xué)都填了一個答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應(yīng)考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會漏解。
四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:已知三角形的三邊長分別為a=0.6,b=1,c=0.8,問這個三角形是直角三角形嗎?有的同學(xué)認(rèn)為此三角形不是直角三角形,其實這個三角形是以b為斜邊的直角三角形。
五是缺少方程思想和轉(zhuǎn)化思想,使綜合類試題痛失分?jǐn)?shù)。
六是書寫不規(guī)范。例如:運用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的同學(xué)寫出一句“由勾股定理得”的'不恰當(dāng)?shù)臄⑹觥?/p>
針對上述問題,痛定思痛,感悟頗多:
第一,教學(xué)不可削弱技能的訓(xùn)練。要學(xué)生真正掌握某個知識,如果缺少相應(yīng)技能的訓(xùn)練是不科學(xué)的。正如教人開車的教練把開車的要點、技巧講清楚,然后叫學(xué)車的學(xué)生馬上開車去考試一樣。試問:當(dāng)教師在講臺上滔滔不絕地講解時,能否保證每一個學(xué)生都專心去聽?能否保證每一個專心去聽的學(xué)生都聽得明白?能否保證每一個聽得明白的學(xué)生都能解同一類題目?可見:“課堂上教師講,學(xué)生聽,聽就會懂,懂就會做!敝皇墙處熞粠樵傅淖龇ǎ處熤挥胁粷M足于自己的“講清楚”,在課堂上幫助學(xué)生獨立完成,并進行一定量的訓(xùn)練,才能實現(xiàn)教學(xué)的有效性。
第二,巧設(shè)錯誤案例,讓學(xué)生辨錯、糾錯,即學(xué)生對教師的有意“示錯”進行分析、判斷,提高防錯能力。在教學(xué)中,教師有時可恰到好處,有意地把估計學(xué)生易錯的做法顯示給學(xué)生,以引起學(xué)生的注意,然后通過師生共同分析錯因,加以糾錯,達到及時、有效預(yù)防,并避免學(xué)生出現(xiàn)類似錯誤的目的。這樣,可防患于未然,并提高學(xué)生分析、判斷、解決問題的能力。
第三,教學(xué)應(yīng)注重數(shù)學(xué)思想和方法傳授。理解掌握各種數(shù)學(xué)思想和方法是形成數(shù)學(xué)技能技巧,提高數(shù)學(xué)能力的前提。 學(xué)生學(xué)習(xí)數(shù)學(xué),學(xué)會是基礎(chǔ),會學(xué)是目的,教是為了不教。教學(xué)中,在加強技能訓(xùn)練的同時,要強化數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué),做到講方法聯(lián)系思想,以思想指導(dǎo)方法,使二者相互交融,相得益彰。此外,在教學(xué)中培養(yǎng)學(xué)生的“問題意識”,激勵學(xué)生善于發(fā)現(xiàn)問題、思考問題,并能運用數(shù)學(xué)方法去解決廣泛的多種多樣的實際問題,以便增強學(xué)生探究新知識、新方法的創(chuàng)造能力。
第四,教學(xué)應(yīng)加大綜合訓(xùn)練的力度。目前的綜合題已經(jīng)由單純的知識疊加型轉(zhuǎn)化為知識、方法和能力綜合型尤其是創(chuàng)新能力型試題,具有知識容量大、解題方法多、能力要求高、突顯數(shù)學(xué)思想方法的運用以及創(chuàng)新意識等特點。教學(xué)時應(yīng)抓好“三轉(zhuǎn)”能力的培養(yǎng):(1)語言轉(zhuǎn)換能力。每道數(shù)學(xué)綜合題都是由一些特定的文字語言、符號語言、圖形語言所組成,解綜合題往往需要較強的語言轉(zhuǎn)換能力,能把普通語言轉(zhuǎn)換成數(shù)學(xué)語言。(2)概念轉(zhuǎn)換能力:綜合題的轉(zhuǎn)譯常常需要較強的數(shù)學(xué)概念的轉(zhuǎn)換能力。(3)數(shù)形轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結(jié)合上找出解題思路。只有如此,方可找到解決綜合題的突破口。
第五,教學(xué)勿忘發(fā)揮板書的特有功能。板書通過學(xué)生的視角器官傳遞信息,比語言富有直觀性。條例清晰,層次分明,邏輯嚴(yán)謹(jǐn)?shù)慕獯疬^程的板演,不但便于學(xué)生理解、掌握知識,還會給學(xué)生起到示范作用。
相信通過反思教學(xué),優(yōu)化方法,細(xì)化過程,一定能取得事半功倍之效。
【勾股定理反思】相關(guān)文章:
勾股定理評課稿12-11
反思與自我反思06-10
反思怎么寫?反思通用范文04-14
個人的反思03-02
初中的反思03-04
比的認(rèn)識反思03-22
gkh反思02-29
比的化簡反思05-13
故鄉(xiāng)的反思05-18