高一數(shù)學(xué)教學(xué)計(jì)劃(合集15篇)
時(shí)間的腳步是無聲的,它在不經(jīng)意間流逝,成績(jī)已屬于過去,新一輪的工作即將來臨,現(xiàn)在就讓我們制定一份計(jì)劃,好好地規(guī)劃一下吧。想學(xué)習(xí)擬定計(jì)劃卻不知道該請(qǐng)教誰?下面是小編為大家整理的高一數(shù)學(xué)教學(xué)計(jì)劃,僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)教學(xué)計(jì)劃1
一、學(xué)情分析
這節(jié)課是在學(xué)生已經(jīng)學(xué)過的二維的平面直角坐標(biāo)系的基礎(chǔ)上的推廣,是以后學(xué)習(xí)空間向量等內(nèi)容的基礎(chǔ)。
二、教學(xué)目標(biāo)
1. 讓學(xué)生經(jīng)歷用類比的數(shù)學(xué)思想方法探索空間直角坐標(biāo)系的建立方法,進(jìn)一步體會(huì)數(shù)學(xué)概念、方法產(chǎn)生和發(fā)展的過程,學(xué)會(huì)科學(xué)的思維方法。
2. 理解空間直角坐標(biāo)系與點(diǎn)的坐標(biāo)的意義,掌握由空間直角坐標(biāo)系內(nèi)的點(diǎn)確定其坐標(biāo)或由坐標(biāo)確定其在空間直角坐標(biāo)系內(nèi)的點(diǎn),認(rèn)識(shí)空間直角坐標(biāo)系中的點(diǎn)與坐標(biāo)的關(guān)系。
3. 進(jìn)一步培養(yǎng)學(xué)生的空間想象能力與確定性思維能力。
三、教學(xué)重點(diǎn):在空間直角坐標(biāo)系中點(diǎn)的坐標(biāo)的確定。
四、教學(xué)難點(diǎn):通過建立空間直角坐標(biāo)系利用點(diǎn)的坐標(biāo)來確定點(diǎn)在空間內(nèi)的位置
五、教學(xué)過程
(一)、問題情景
1. 確定一個(gè)點(diǎn)在一條直線上的位置的方法。
2. 確定一個(gè)點(diǎn)在一個(gè)平面內(nèi)的位置的方法。
3. 如何確定一個(gè)點(diǎn)在三維空間內(nèi)的位置?
例:如圖,在房間(立體空間)內(nèi)如何確定一個(gè)同學(xué)的頭所在位置?
在學(xué)生思考討論的基礎(chǔ)上,教師明確:確定點(diǎn)在直線上,通過數(shù)軸需要一個(gè)數(shù);確定點(diǎn)在平面內(nèi),通過平面直角坐標(biāo)系需要兩個(gè)數(shù)。那么,要確定點(diǎn)在空間內(nèi),應(yīng)該需要幾個(gè)數(shù)呢?通過類比聯(lián)想,容易知道需要三個(gè)數(shù)。要確定同學(xué)的頭的位置,知道同學(xué)的頭到地面的距離、到相鄰的兩個(gè)墻面的距離即可。
(此時(shí)學(xué)生只是意識(shí)到需要三個(gè)數(shù),還不能從坐標(biāo)的角度去思考,因此,教師在這兒要重點(diǎn)引導(dǎo))
教師明晰:在地面上建立直角坐標(biāo)系xOy,則地面上任一點(diǎn)的位置只須利用x,y就可確定。為了確定不在地面內(nèi)的電燈的位置,須要用第三個(gè)數(shù)表示物體離地面的高度,即需第三個(gè)坐標(biāo)z.因此,只要知道電燈到地面的距離、到相鄰的兩個(gè)墻面的距離即可。例如,若這個(gè)電燈在平面xOy上的射影的兩個(gè)坐標(biāo)分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個(gè)電燈的位置(如圖26-3)。
這樣,仿照初中平面直角坐標(biāo)系,就建立了空間直角坐標(biāo)系O-xyz,從而確定了空間點(diǎn)的位置。
(二)、建立模型
1. 在前面研究的基礎(chǔ)上,先由學(xué)生對(duì)空間直角坐標(biāo)系予以抽象概括,然后由教師給出準(zhǔn)確的定義。
從空間某一個(gè)定點(diǎn)O引三條互相垂直且有相同單位長(zhǎng)度的數(shù)軸,這樣就建立了空間直角坐標(biāo)系O-xyz,點(diǎn)O叫作坐標(biāo)原點(diǎn),x軸、y軸、z軸叫作坐標(biāo)軸,這三條坐標(biāo)軸中每?jī)蓷l確定一個(gè)坐標(biāo)平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進(jìn)一步明確:
(1)在空間直角坐標(biāo)系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個(gè)坐標(biāo)系為右手坐標(biāo)系,課本中建立的坐標(biāo)系都是右手坐標(biāo)系。
(2)將空間直角坐標(biāo)系O-xyz畫在紙上時(shí),x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長(zhǎng)度相等,但x軸上的單位長(zhǎng)度等于y軸和z軸上的單位長(zhǎng)度的 ,這樣,三條軸上的單位長(zhǎng)度直觀上大致相等。
2. 空間直角坐標(biāo)系O-xyz中點(diǎn)的坐標(biāo)。
思考:在空間直角坐標(biāo)系中,空間任意一點(diǎn)A與有序數(shù)組(x,y,z)有什么樣的對(duì)應(yīng)關(guān)系?
在學(xué)生充分討論思考之后,教師明確:
(1)過點(diǎn)A作三個(gè)平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點(diǎn)P,Q,R,點(diǎn)P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,這樣,對(duì)空間任意點(diǎn)A,就定義了一個(gè)有序數(shù)組(x,y,z)。
(2)反之,對(duì)任意一個(gè)有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標(biāo)軸上分別作出點(diǎn)P,Q,R,使它們?cè)趚軸、y軸、z軸上的坐標(biāo)分別是x,y,z,再分別過這些點(diǎn)作垂直于各自所在的坐標(biāo)軸的平面,這三個(gè)平面的交點(diǎn)就是所求的點(diǎn)A.
這樣,在空間直角坐標(biāo)系中,空間任意一點(diǎn)A與有序數(shù)組(x,y,z)之間就建立了一種一一對(duì)應(yīng)關(guān)系:A (x,y,z)。
教師進(jìn)一步指出:空間直角坐標(biāo)系O-xyz中任意點(diǎn)A的坐標(biāo)的概念
對(duì)于空間任意點(diǎn)A,作點(diǎn)A在三條坐標(biāo)軸上的射影,即經(jīng)過點(diǎn)A作三個(gè)平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點(diǎn)P,Q,R,點(diǎn)P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點(diǎn)A的坐標(biāo),記為A(x,y,z)。
(三)、例 題 與 練 習(xí)
1. 課本135頁例1.
注意:在分析中緊扣坐標(biāo)定義,強(qiáng)調(diào)三個(gè)步驟,第一步從原點(diǎn)出發(fā)沿x軸正方向移動(dòng)5個(gè)單位,第二步沿與y軸平行的方向向右移動(dòng)4個(gè)單位,第三步沿與z軸平行的方向向上移動(dòng)6個(gè)單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角坐標(biāo)系中,坐標(biāo)平面xOy,xOz,yOz上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
(2)在空間直角坐標(biāo)系中,x軸、y軸、z軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
解:(1)xOy平面、xOz平面、yOz平面內(nèi)的點(diǎn)的坐標(biāo)分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點(diǎn)的坐標(biāo)分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長(zhǎng)方體ABCD-ABCD的邊長(zhǎng)AB=12,AD=8,AA=5,以這個(gè)長(zhǎng)方體的頂點(diǎn)A為坐標(biāo)原點(diǎn),射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個(gè)長(zhǎng)方體各個(gè)頂點(diǎn)的坐標(biāo)。
注意:此題可以由學(xué)生口答,教師點(diǎn)評(píng)。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點(diǎn)為原點(diǎn),以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,那么各頂點(diǎn)的坐標(biāo)又是怎樣的呢?
得出結(jié)論:建立不同的坐標(biāo)系,所得的同一點(diǎn)的坐標(biāo)也不同。
[練 習(xí)]
1. 在空間直角坐標(biāo)系中,畫出下列各點(diǎn):A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長(zhǎng)方體ABCD-ABCD的邊長(zhǎng)AB=12,AD=8,AA=7,以這個(gè)長(zhǎng)方體的頂點(diǎn)B為坐標(biāo)原點(diǎn),射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個(gè)長(zhǎng)方體各個(gè)頂點(diǎn)的坐標(biāo)。
3. 寫出坐標(biāo)平面yOz上yOz平分線上的點(diǎn)的坐標(biāo)滿足的條件。
(四)、拓展延伸
分別寫出點(diǎn)(1,1,1)關(guān)于各坐標(biāo)軸和各個(gè)坐標(biāo)平面對(duì)稱的點(diǎn)的坐標(biāo)。
六、評(píng)價(jià)設(shè)計(jì)
1、 練習(xí) : 課本P136. 1、2、3
2、 課堂作業(yè): 課本P138. 1、2
高一數(shù)學(xué)教學(xué)計(jì)劃2
一 指導(dǎo)思想
為了使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下:
1.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
2.提高數(shù)學(xué)地提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力
3.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
4.提高學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
二 學(xué)情分析
1. 基本情況:班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約 人,后進(jìn)生約人。
2.我所執(zhí)教的215班均屬普高班,學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
三 教材分析
我們采用的教材是人教版必修教材,本冊(cè)教材共分兩章:第四章《三角函數(shù)》和第五章《平面向量》。三角函數(shù)的主要內(nèi)容有:任意角的三角函數(shù)概念、弧度制、同角三角函數(shù)間的關(guān)系、誘導(dǎo)公式、兩角和與差的三角函數(shù)、二倍角的三角函數(shù)以及三角函數(shù)的圖象和性質(zhì)、已知三角函數(shù)值求角等。難點(diǎn)是弧度制的概念、綜合運(yùn)用本章公式進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)及恒等式的證明周期函數(shù)的概念,函數(shù)y=Asin(x+)的圖象與正弦曲線的關(guān)系。平面向量主要內(nèi)容是向量及其運(yùn)算和解斜三角形,向量的幾何表示和坐標(biāo)表示、向量的線性運(yùn)算,平面向量的數(shù)量積,平面兩點(diǎn)間的距離公式,線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,平移公式,解斜三角形是本章的重點(diǎn),而向量運(yùn)算法則的理解和運(yùn)用,已知兩邊和其中一邊的對(duì)角解斜三角形等是本章的難點(diǎn)。
四 教法分析
在教學(xué)過程中盡量做到以下幾個(gè)方面:
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
五 教學(xué)及輔導(dǎo)措施
1. 激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2. 注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3. 加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4. 抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5. 自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
6. 重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
六 優(yōu)、差生名單及輔導(dǎo)措施
1. 對(duì)于優(yōu)生:學(xué)生自愿成立興趣小組,興趣小組可以在老師的指導(dǎo)下由學(xué)生自己不定期的開展活動(dòng),圍繞數(shù)學(xué)競(jìng)賽拓展他們的知識(shí)面,加深對(duì)所學(xué)知識(shí)的理解和應(yīng)用,在原有基礎(chǔ)上,穩(wěn)定班級(jí)在數(shù)學(xué)學(xué)習(xí)鐘的尖子學(xué)生,進(jìn)一步培養(yǎng)他們自主學(xué)習(xí)的意識(shí)。
2. 對(duì)于待發(fā)展生:對(duì)于成績(jī)較差的學(xué)生,針對(duì)他們的基礎(chǔ)差異和個(gè)性差異,耐心細(xì)致的進(jìn)行個(gè)別輔導(dǎo),有問題隨時(shí)解決,并多予以鼓勵(lì)。在作業(yè)中體現(xiàn)分層。盡量做到因材施教。
七 教學(xué)進(jìn)度安排
周 次 | 課時(shí) | 內(nèi) 容 | 重 點(diǎn)、難 點(diǎn) |
第1周 | 5 | 任意角和弧度制(2) 任意角的三角函數(shù)(3) | 了解任意角的概念和弧度制,能進(jìn)行弧度與角度的互化。任意角三角函數(shù)的定義。 |
第2周 | 5 | 同角三角函數(shù)的基本關(guān)系式(3) 三角函數(shù)的誘導(dǎo)公式(2) | 誘導(dǎo)公式的探究。運(yùn)用誘導(dǎo)公式。 |
第3周 | 5 | 兩角和與差的正弦、余弦、正切 (5) | 兩角和與差的公式及其應(yīng)用與求值、化簡(jiǎn) |
第4周 | 5 | 二倍角的正弦、余弦、正切 (3) 正、余弦函數(shù)的圖象(2) | 三角函數(shù)的倍角公式、和差化積公式 正、余弦函數(shù)圖象的畫法 |
第5周 | 5 | 三角函數(shù)圖象與性質(zhì)(4) | 三角函數(shù)的圖象及其性質(zhì)。函數(shù)思想。 |
第6周 | 5 | 函數(shù)y=sin(+)的圖象(2)、三角函數(shù)模型的簡(jiǎn)單應(yīng)用(2) | 用參數(shù)思想討論圖象的變換過程。用三角模型解決一些具有周期變化規(guī)律的實(shí)際問題。難點(diǎn):實(shí)際問題抽象為三角函數(shù)模型 |
第7周 | 5 | 正切函數(shù)的圖象和性質(zhì)(3) 已知三角函數(shù)值求角(2) | 正切函數(shù)的圖象和性質(zhì) 反三角函數(shù)的表示 |
第8周 | 5 | 三角函數(shù)單元復(fù)習(xí) | 知識(shí)點(diǎn)的復(fù)習(xí)+練習(xí)卷 |
第9周 | 5 | 平面向量的實(shí)際背景及基本概念(2)、平面向量的線性運(yùn)算(2) | 向量的概念。相等向量的概念。向量的幾何表示。向量加、減法的運(yùn)算及幾何意義。向量數(shù)乘運(yùn)算及幾何意義。 |
第10周 | 5 | 平面向量的基本定理及坐標(biāo)表示(2) 平面向量的數(shù)量積(2) | 平面向量基本定理。會(huì)用平面向量數(shù)量積的表示向量的模與夾角。 |
第11周 | 5 | 平面向量的應(yīng)用舉例(2) | 用向量方法解決實(shí)際問題的方法。向量方法解決幾何問題的三步曲。 |
第12周 | 5 | 向量平移、正弦定理、余弦定理 | 向量平移的公式 |
第13周 | 5 | 簡(jiǎn)單的三角恒等變換(3) 第三章小結(jié)(1) | 以11個(gè)公式為依據(jù),推導(dǎo)和差化積、積化和差等公式,會(huì)進(jìn)行三角變換。 |
第14周 | 5 | 期末復(fù)習(xí) | |
第15周 | 5 | 期末復(fù)習(xí) | 分章歸納復(fù)習(xí)+3套模擬測(cè)試 |
高一數(shù)學(xué)教學(xué)計(jì)劃3
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識(shí)和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對(duì)學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會(huì)所需要的必備的基礎(chǔ)知識(shí)、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識(shí)和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
二、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識(shí)的內(nèi)外結(jié)構(gòu),熟練把握知識(shí)的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對(duì)教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對(duì)知識(shí)點(diǎn)的基本要求,防止自覺不自覺地對(duì)教材加深加寬。同時(shí),在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識(shí)的廣度來求得知識(shí)的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實(shí)施的出發(fā)點(diǎn)和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識(shí)體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);組織好研究性課題的教學(xué),讓學(xué)生感受社會(huì)生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、落實(shí)課外活動(dòng)的內(nèi)容。組織和加強(qiáng)數(shù)學(xué)興趣小組的活動(dòng)內(nèi)容。
三、教學(xué)內(nèi)容
第一章集合與函數(shù)概念
1.通過實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識(shí)別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集。
6.理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集。
7.能使用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對(duì)理解抽象概念的作用。
8.通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;了解映射的概念。
9.在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
10.通過具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用。
11.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。
12.學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。
課時(shí)分配(14課時(shí))
第二章基本初等函數(shù)(I)
1.通過具體實(shí)例,了解指數(shù)函數(shù)模型的實(shí)際背景。
2.理解有理指數(shù)冪的含義,通過具體實(shí)例了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算。
3.理解指數(shù)函數(shù)的概念和意義,能借助計(jì)算器或計(jì)算機(jī)畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。
4.在解決簡(jiǎn)單實(shí)際問題過程中,體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型。
5.理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù);通過閱讀材料,了解對(duì)數(shù)的發(fā)現(xiàn)歷史以及其對(duì)簡(jiǎn)化運(yùn)算的作用。
6.通過具體實(shí)例,直觀了解對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計(jì)算器或計(jì)算機(jī)畫出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性和特殊點(diǎn)。
7.通過實(shí)例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。
課時(shí)分配(15課時(shí))
第三章函數(shù)的應(yīng)用
1.結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系。
根據(jù)具體函數(shù)的圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
2.利用計(jì)算工具,比較指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)增長(zhǎng)差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類型增長(zhǎng)的含義。
3.收集一些社會(huì)生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。
4.根據(jù)某個(gè)主題,收集17世紀(jì)前后發(fā)生的一些對(duì)數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實(shí)生活中的函數(shù)實(shí)例,采取小組合作的方式寫一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的文章,在班級(jí)中進(jìn)行交流。
課時(shí)分配(8課時(shí))
3.1.1 | 方程的根與函數(shù)的零點(diǎn) | 約1課時(shí) | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時(shí) | 10月26日27日 |
3.2.1 | 幾類不同增長(zhǎng)的函數(shù)模型 | 約2課時(shí) | 10月30日 | 11月3日 |
3.2.2 | 函數(shù)模型的應(yīng)用實(shí)例 | 約2課時(shí) | |
小結(jié) | 約1課時(shí) |
考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點(diǎn)、難點(diǎn)、易錯(cuò)點(diǎn),各個(gè)擊破,夯實(shí)基礎(chǔ),規(guī)范答題,一定會(huì)穩(wěn)中求進(jìn),取得優(yōu)異的成績(jī)。
高一數(shù)學(xué)教學(xué)計(jì)劃4
一、具體目標(biāo):
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)
二、本學(xué)期要達(dá)到的教學(xué)目標(biāo)
1.雙基要求:
在基礎(chǔ)知識(shí)方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照一定的程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、能使用計(jì)數(shù)器及簡(jiǎn)單的推理、畫圖。
2.能力培養(yǎng):
能運(yùn)用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì);會(huì)根據(jù)法則、公式正確的進(jìn)行運(yùn)算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計(jì)運(yùn)算途徑;會(huì)提出、分析和解決簡(jiǎn)單的帶有實(shí)際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,形成數(shù)學(xué)的意思;從而通過獨(dú)立思考,會(huì)從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。
3. 思想教育:
三、進(jìn)度授課計(jì)劃及進(jìn)度表(略)
高中是人生中的關(guān)鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級(jí)上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃,希望大家喜歡。
高一數(shù)學(xué)教學(xué)計(jì)劃5
本學(xué)期擔(dān)任高一5、6兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有110人,初中的基礎(chǔ)參差不齊,但兩個(gè)班的學(xué)生整體水平還能夠;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評(píng)價(jià)自我,這給教學(xué)工作帶來了必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
一、教學(xué)目標(biāo)、
。ㄒ唬┣橐饽繕(biāo)
。1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
。2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。
(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評(píng)價(jià),提高學(xué)生的合作意識(shí)
。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
。5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維本事的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗(yàn)“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
。ǘ┍臼乱
1、培養(yǎng)學(xué)生記憶本事。
。1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對(duì)數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。
。3)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對(duì)應(yīng)關(guān)系,培養(yǎng)記憶本事。
2、培養(yǎng)學(xué)生的運(yùn)算本事。
。1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算本事。
。2)加強(qiáng)對(duì)概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算本事。
。3)經(jīng)過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡(jiǎn)捷性本事。
。4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算本事,促使知識(shí)間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算本事。
3、培養(yǎng)學(xué)生的思維本事。
。1)經(jīng)過對(duì)簡(jiǎn)易邏輯的教學(xué),培養(yǎng)學(xué)生思維的周密性及思維的邏輯性。
。2)經(jīng)過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維本事。
。3)經(jīng)過不等式、函數(shù)的引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。
。4)加強(qiáng)知識(shí)的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的本事。
(5)經(jīng)過典型例題不一樣思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。
。ㄈ┲R(shí)目標(biāo)
1、集合、簡(jiǎn)易邏輯
。1)理解集合、子集、補(bǔ)訂、交集、交集的概念、了解空集和全集的意義、了解屬于、包含、相等關(guān)系的意義、掌握有關(guān)的術(shù)語和符號(hào),并會(huì)用它們正確表示一些簡(jiǎn)單的集合。
。2)理解邏輯聯(lián)結(jié)詞"或"、"且"、"非"的含義、理解四種命題及其相互關(guān)系、掌握充分條件、必要條件及充要條件的意義。
。3)掌握一元二次不等式、絕對(duì)值不等式的解法。
2、函數(shù)
(1)了解映射的概念,理解函數(shù)的概念。
。2)了解函數(shù)的單調(diào)性、奇偶性的概念,掌握確定一些簡(jiǎn)單函數(shù)的單調(diào)性、奇偶性的方法。
。3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù)。
。4)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì)。
。5)理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì)、掌握對(duì)數(shù)函數(shù)的概念、圖像和性質(zhì)。
。6)能夠運(yùn)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡(jiǎn)單的實(shí)際問題。
3、數(shù)列
。1)理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。
。2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問題。
。3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問題。
二、教學(xué)重點(diǎn)
1、集合、子集、補(bǔ)集、交集、并集、一元二次不等式的解法
四種命題、充分條件和必要條件、
2、映射、函數(shù)、函數(shù)的單調(diào)性、反函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用。
3、等差數(shù)列及其通項(xiàng)公式、等差數(shù)列前n項(xiàng)和公式。
等比數(shù)列及其通項(xiàng)公式、等比數(shù)列前n項(xiàng)和公式。
三、教學(xué)難點(diǎn)
1、四種命題、充分條件和必要條件
2、反函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)
3、等差、等比數(shù)列的性質(zhì)
四、工作措施
抓好課堂教學(xué),提高教學(xué)效益。課堂教學(xué)是教學(xué)的主要環(huán)節(jié),所以,抓好課堂教學(xué)是教學(xué)之根本,是大面積提高數(shù)學(xué)成績(jī)的主途徑。
。1)、扎實(shí)落實(shí)團(tuán)體備課,經(jīng)過團(tuán)體討論,抓住教學(xué)資料的實(shí)質(zhì),構(gòu)成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題、月考題。
。2)、加大課堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)本事。最有效的學(xué)習(xí)是自主學(xué)習(xí),所以,課堂教學(xué)要大力培養(yǎng)學(xué)生自主探究的精神,經(jīng)過“知識(shí)的產(chǎn)生,發(fā)展”,逐步構(gòu)成知識(shí)體系;經(jīng)過“知識(shí)質(zhì)疑、展活”遷移知識(shí)、應(yīng)用知識(shí),提高本事。同時(shí)要養(yǎng)成學(xué)生良好的學(xué)習(xí)習(xí)慣,不斷提高學(xué)生的數(shù)學(xué)素養(yǎng),從而提高數(shù)學(xué)素養(yǎng),并大面積提高數(shù)學(xué)成績(jī)。
高一數(shù)學(xué)教學(xué)計(jì)劃6
一、指導(dǎo)思想
本學(xué)期高一備課組以學(xué)校工作計(jì)劃為指導(dǎo),以提高教學(xué)質(zhì)量為目標(biāo),以優(yōu)化課堂教學(xué)為中心,團(tuán)結(jié)合作,努力提高思想素質(zhì)和業(yè)務(wù)素質(zhì),團(tuán)結(jié)合作,互相學(xué)習(xí),認(rèn)真?zhèn)浜谜n,上好每一節(jié)課,并結(jié)合新教材的特點(diǎn),開展研究性學(xué)習(xí)的活動(dòng),在教學(xué)中,抓好基礎(chǔ)知識(shí)教學(xué),著重學(xué)生本事的培養(yǎng),打好基礎(chǔ),全面提高,為來年高考作好充分的準(zhǔn)備,爭(zhēng)取優(yōu)異的成績(jī)。
二、教學(xué)目標(biāo)、
。ㄒ唬┣橐饽繕(biāo)
(1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。(3)在探究三角函數(shù)的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評(píng)價(jià),提高學(xué)生的合作意識(shí)
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
。5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維本事的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗(yàn)“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
。ǘ┍臼乱
1、培養(yǎng)學(xué)生記憶本事。
(1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對(duì)數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。
。3)經(jīng)過揭示三角函數(shù)有關(guān)概念、公式和圖形的對(duì)應(yīng)關(guān)系,培養(yǎng)記憶本事。
2、培養(yǎng)學(xué)生的運(yùn)算本事。
(1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算本事。
。2)加強(qiáng)對(duì)概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算本事。
。3)經(jīng)過算法初步,1算法步驟2程序框圖(起始框,確定框,附值框,)3silab語言(順序,條件語句,循環(huán)語句)。第二部分,統(tǒng)計(jì),第三步分,概率,古典概型,幾何概型。的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡(jiǎn)捷性本事。
。4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算本事,促使知識(shí)間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算本事。
三、具體措施
1、期中考前上好第一冊(cè)(必修3),期中考后完成好必修4
2、抓好數(shù)學(xué)補(bǔ)差,培優(yōu)活動(dòng)各班在星期1或星期4的午時(shí)
3、立足于教材。
4、要求學(xué)生完成課后練習(xí)及每一章課后習(xí)題
5、我們組還繼續(xù)學(xué)習(xí)了《課堂教學(xué)論》,《現(xiàn)代教育技術(shù)》,努力學(xué)習(xí)多媒體課件的制作。
6、繼續(xù)認(rèn)真開展師徒結(jié)對(duì)活動(dòng),以老帶新。師徒間經(jīng)常聽課交流,認(rèn)真評(píng)課。集中備課,共同商討教材等。
7抓好競(jìng)賽輔導(dǎo),時(shí)間定于周三、周四的提前時(shí)間,周六的午時(shí)1點(diǎn)到3點(diǎn);任教教師:高一全體數(shù)學(xué)教師。
8、段統(tǒng)一考試在周日或者周三的晚自修時(shí)間,每隔2周考一次;
9、上學(xué)期必修4的學(xué)分認(rèn)定考試補(bǔ)考及落實(shí)工作;
10、響應(yīng)學(xué)校教務(wù)處的備課計(jì)劃安排,督促組員落實(shí)工作;
11、抓好團(tuán)體備課
高一數(shù)學(xué)教學(xué)計(jì)劃7
高一年級(jí)學(xué)生往往對(duì)課程增多、課堂學(xué)習(xí)容量加大不適應(yīng),顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導(dǎo)。數(shù)學(xué)網(wǎng)高中頻道整理了高一數(shù)學(xué)下冊(cè)教學(xué)計(jì)劃,希望能幫助教師授課!
本學(xué)期高一數(shù)學(xué)備課組的工作緊緊圍繞學(xué)校、教科處及教研組的計(jì)劃安排來開展,以教學(xué)改革為動(dòng)力、以學(xué)校創(chuàng)建為前提、以提高課堂效率為目的、以自主教育為模式、以現(xiàn)代信息技術(shù)為手段、以培養(yǎng)學(xué)生的創(chuàng)新能力為目標(biāo),全面改進(jìn)教育教學(xué)方法,更新教育觀念,改變傳統(tǒng)教學(xué)模式,培養(yǎng)學(xué)生綜合素質(zhì),搞好本學(xué)期工作。
一、指導(dǎo)思想
以教研組工作計(jì)劃為指導(dǎo),按照均衡、優(yōu)質(zhì)、高效原則,精誠團(tuán)結(jié),和諧創(chuàng)新,加強(qiáng)科組建設(shè),提高高一數(shù)學(xué)備課組的整體實(shí)力;努力完成本學(xué)期的教學(xué)目標(biāo),進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足學(xué)生發(fā)展與社會(huì)進(jìn)步的需要。這學(xué)期的工作重點(diǎn)是繼續(xù)進(jìn)行新課標(biāo)和新教材的研究,要著重抓好差生輔導(dǎo)和尖子生的培養(yǎng),讓絕大部分學(xué)生跟上教學(xué)進(jìn)度。
二、工作思路
1.在學(xué)?蒲刑幒徒虅(wù)處的領(lǐng)導(dǎo)下,有計(jì)劃地組織好全組教師的學(xué)習(xí)與培訓(xùn)工作,特別是搞好新課程標(biāo)準(zhǔn)和新教材的學(xué)習(xí)、研究和交流,落實(shí)學(xué)校的辦學(xué)理念。推廣現(xiàn)代教育科研成果,定期開展多種形式的教研活動(dòng)。
2.以組風(fēng)建設(shè)為主線,以新課程標(biāo)準(zhǔn)為指導(dǎo),以教法探索為重點(diǎn),以構(gòu)建主動(dòng)發(fā)展型課堂教學(xué)模式為主題,以提高隊(duì)伍素質(zhì),提高課堂效率,提高教學(xué)質(zhì)量為目的。深化課堂教學(xué)改革,努力改善教與學(xué)的方式。
3.教學(xué)研究要以集體備課為基礎(chǔ),以作課、聽課、評(píng)課活動(dòng)以及出考卷活動(dòng)為載體,以課題研究、論文、案例撰寫為提高,在研究狀態(tài)下理性的工作。培養(yǎng)本組教師養(yǎng)成教學(xué)反思的習(xí)慣,
三、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5:
第一章:解三角形;重點(diǎn)是正弦定理與余弦定理;難點(diǎn)是正弦定理與余弦定理的應(yīng)用;
第二章:數(shù)列;重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和;難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用;
第三章:不等式;重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與基本不等式;難點(diǎn)是二元一次不等式(組)及應(yīng)用;
必修2:
第一章:立體幾何初步。重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積,直線與平面平行及垂直的判定及其性質(zhì);難點(diǎn)是空間幾何體的三視圖,直線與平面平行及垂直的判定及其性質(zhì);
第二章:直線與方程;重點(diǎn)是直線的傾斜角與斜率及直線方程;難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目;圓與方程;重點(diǎn)是圓的方程及直線與圓的位置關(guān)系;難點(diǎn)是直線與圓的位置關(guān)系。
四、學(xué)情分析
經(jīng)過一學(xué)期的觀察發(fā)現(xiàn)學(xué)生的基礎(chǔ)知識(shí)水平、學(xué)習(xí)自覺性與基本學(xué)習(xí)方法比較欠缺,學(xué)生心理不穩(wěn)定,空間思維、抽象思維、邏輯思維較差,而本學(xué)期所要學(xué)習(xí)的內(nèi)容包含了高中數(shù)學(xué)中重要而難學(xué)的數(shù)列、不等式、立體幾何部分,因而教學(xué)時(shí)盡可能以課本為本,注重基礎(chǔ)和規(guī)范,不隨意拔高難度,努力使絕大部分學(xué)生打好三基。教學(xué)時(shí)在完成市教學(xué)進(jìn)度的前提下,盡可能的放慢速度,確保絕大部分學(xué)生的學(xué)習(xí)質(zhì)量。平時(shí)教學(xué)中老師要注意不斷鼓勵(lì)和欣賞學(xué)生的優(yōu)點(diǎn)和進(jìn)步,使學(xué)生不斷體驗(yàn)到學(xué)習(xí)數(shù)學(xué)的樂趣。平時(shí)測(cè)試要注重考查三基,嚴(yán)格控制難度,使絕大部分學(xué)生及格,使學(xué)生體驗(yàn)到進(jìn)步和成功的喜悅。同時(shí)需進(jìn)一步加強(qiáng)學(xué)法指導(dǎo),多于學(xué)生進(jìn)行情感交流。
五、工作目標(biāo)
1、狠抓教學(xué)常規(guī)和學(xué)習(xí)常規(guī)的貫徹落實(shí)。在數(shù)學(xué)教學(xué)研究中努力做到三主(教學(xué)研究以學(xué)習(xí)理論為主導(dǎo)、大綱教材課程標(biāo)準(zhǔn)為主體、探索教學(xué)模式為主線)和三有(教學(xué)研究要對(duì)教學(xué)實(shí)踐有指導(dǎo)、對(duì)教學(xué)質(zhì)量有促進(jìn)、對(duì)教師有提高)。
2、加強(qiáng)現(xiàn)代教育教學(xué)理論的學(xué)習(xí),積極進(jìn)行課堂教學(xué)改革試驗(yàn)、逐步形成本學(xué)科特色,把我組建設(shè)成一個(gè)團(tuán)結(jié)協(xié)作、富有開拓創(chuàng)新精神的先進(jìn)集體。
3、把對(duì)新課程標(biāo)準(zhǔn)的學(xué)習(xí)與對(duì)新教材的研究結(jié)合起來,力求使每一位數(shù)學(xué)老師都能較好地領(lǐng)會(huì)新課程標(biāo)準(zhǔn)的基本理念和目標(biāo),較好地把握數(shù)學(xué)學(xué)習(xí)內(nèi)容中有關(guān)數(shù)感、符號(hào)感、空間觀念、統(tǒng)計(jì)觀念、應(yīng)用意識(shí)、推理能力等核心概念的內(nèi)涵和要求,初步掌握所教教材的結(jié)構(gòu)特點(diǎn)、每章每節(jié)教材的地位、作用和目標(biāo)要求。
4、認(rèn)真做好義務(wù)教育數(shù)學(xué)實(shí)驗(yàn)教材和高中新教材的階段總結(jié),加強(qiáng)教法的研究,注意總結(jié)和發(fā)現(xiàn)典型的教學(xué)案例,積極組織本組教師做好資料、信息收集工作,撰寫教育教學(xué)論文、案例,爭(zhēng)取在全國等各級(jí)論文評(píng)比中獲獎(jiǎng)。
六、具體措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
7、積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例習(xí)題統(tǒng)一、資料統(tǒng)一、測(cè)試統(tǒng)一;上好每一節(jié)課,及時(shí)對(duì)學(xué)生的學(xué)習(xí)進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
高一數(shù)學(xué)教學(xué)計(jì)劃8
新學(xué)期已開始,為使新學(xué)期的工作有條不紊的進(jìn)行,使教學(xué)工作更加科學(xué)合理,使學(xué)生對(duì)知識(shí)的接收更加得心應(yīng)手,特訂新學(xué)期個(gè)人教學(xué)計(jì)劃如下
一,指導(dǎo)思想
加強(qiáng)現(xiàn)代教育理論的學(xué)習(xí),提高自身的素質(zhì),轉(zhuǎn)變教育觀念,以教育科研為先導(dǎo),以培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力為重點(diǎn),深化課堂教學(xué)改革,大力推進(jìn)素質(zhì)教育。
二,教材分析
本冊(cè)教材具有以下幾個(gè)明顯的特點(diǎn):
1。為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點(diǎn)
教科書提供了大量數(shù)學(xué)活動(dòng)的線索,作為所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。目的是使學(xué)生能夠在所提供的學(xué)習(xí)情景中,通過探索與交流等活動(dòng),獲得必要的發(fā)展。
2,向?qū)W生提供現(xiàn)實(shí),有趣,富有挑戰(zhàn)性的學(xué)習(xí)素材
教科書從學(xué)生實(shí)際出發(fā),用他們熟悉或感興趣的問題情景引入學(xué)習(xí)主題,并提供了眾多有趣而富有數(shù)學(xué)含義的問題,以展開數(shù)學(xué)探究。
3,為學(xué)生提供探索,交流的時(shí)間與空間
教科書依據(jù)學(xué)生已有的知識(shí)背景和活動(dòng)經(jīng)驗(yàn),提供了大量的操作,思考與交流的機(jī)會(huì),幫助學(xué)生通過思考與交流,梳理所學(xué)的知識(shí),建立符合個(gè)體認(rèn)知特點(diǎn)的知識(shí)結(jié)構(gòu)。
4,展現(xiàn)數(shù)學(xué)知識(shí)的形成與應(yīng)用過程
教科書采用"問題情境—建立模型—解釋,應(yīng)用與拓展"的模式展開,有利于學(xué)生更好地理解數(shù)學(xué),應(yīng)用數(shù)學(xué),增強(qiáng)學(xué)好數(shù)學(xué)的信心。
5,滿足不同學(xué)生的發(fā)展需求
教科書中"讀一讀"給學(xué)生以更多了解數(shù)學(xué),研究數(shù)學(xué)的機(jī)會(huì)。教科書中的習(xí)題分為兩類:一類面向全體學(xué)生;另一類面向有更多數(shù)學(xué)需求的學(xué)生。
三,教材的重點(diǎn)和難點(diǎn)
本冊(cè)教材從內(nèi)容上看,教學(xué)重點(diǎn)是三角形和四邊形的性質(zhì)定理
和判定定理的應(yīng)用以及一元二次方程的應(yīng)用。教學(xué)難點(diǎn)是對(duì)反
比例函數(shù)的理解及應(yīng)用;用試驗(yàn)或模擬試驗(yàn)的方法估計(jì)一些復(fù)
雜的隨機(jī)時(shí)間發(fā)生的概率。
四,教學(xué)措施:
1,根據(jù)學(xué)生實(shí)際,創(chuàng)造性地使用教材,積極開發(fā)和利用各種教學(xué)資源,為學(xué)生提供豐富多彩的學(xué)習(xí)素材。
2,加強(qiáng)直觀教學(xué),充分利用教具,學(xué)具等多媒體教學(xué),以豐富學(xué)生感知認(rèn)識(shí)對(duì)象的途徑,促使他們更加樂意接近數(shù)學(xué),更好地理解數(shù)學(xué)。
3,關(guān)注學(xué)生的個(gè)體差異,有效的實(shí)施有差異的教學(xué),使每個(gè)學(xué)生都能得到充分的發(fā)展。
4,加強(qiáng)學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),主要培養(yǎng)學(xué)生的書寫,認(rèn)真分析問題的習(xí)慣。同時(shí)注意學(xué)習(xí)態(tài)度的培養(yǎng)。
五,時(shí)間安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函數(shù)
6月1日——6月10日頻率與概率
6月11日——7月11日復(fù)習(xí)考試
>高中數(shù)學(xué)教學(xué)計(jì)劃10
本學(xué)期我擔(dān)任高一(5)、(16)班的數(shù)學(xué)教學(xué)工作,本學(xué)期的教學(xué)工作計(jì)劃如下。
一、指導(dǎo)思想:
。1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計(jì)的初步知識(shí),計(jì)算機(jī)的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
。3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
。4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。
。6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、學(xué)情分析及相關(guān)措施:
高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長(zhǎng),面對(duì)新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)。所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,能力要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。。
。3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對(duì)所學(xué)知識(shí)進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測(cè)自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
。5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競(jìng)選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
。6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高一數(shù)學(xué)教學(xué)計(jì)劃9
一.指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《新課程標(biāo)準(zhǔn)》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計(jì)的初步知識(shí),計(jì)算機(jī)的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二.學(xué)情分析:
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面: 1、進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、
廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等.客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動(dòng)學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識(shí)的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法.而一部分同學(xué)上課沒能專心聽課,對(duì)要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、對(duì)自己學(xué)習(xí)數(shù)學(xué)的好差(或成敗)不了解,更不會(huì)去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。
4、不能計(jì)劃學(xué)習(xí)行動(dòng),不會(huì)安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時(shí)監(jiān)控每一步驟,對(duì)學(xué)習(xí)結(jié)果不會(huì)正確地自我評(píng)價(jià)。
5、不重視基礎(chǔ).一些“自我感覺良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。 此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識(shí)和能力,對(duì)數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運(yùn)用數(shù)學(xué)語言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績(jī)的提高
三、教學(xué)目標(biāo)與要求
必修1,主要涉及兩章內(nèi)容:
第一章:集合
通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時(shí)的簡(jiǎn)潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合語言表示數(shù)學(xué)對(duì)象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關(guān)系,能識(shí)別給定集合的子集,了解全集與空集的含義;
3.理解補(bǔ)集的含義,會(huì)求在給定集合中某個(gè)集合的補(bǔ)集;
4.理解兩個(gè)集合的并集和交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識(shí)的過程中,培養(yǎng)學(xué)生的思維能力。
第二章:函數(shù)的概念與基本初等函數(shù)Ⅰ
教學(xué)本章時(shí)應(yīng)立足于現(xiàn)實(shí)生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動(dòng)—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會(huì)現(xiàn)象基本規(guī)律的工具和語言,學(xué)會(huì)用函數(shù)的思想、變化的觀點(diǎn)分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識(shí)表述、刻畫事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)時(shí)描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
第三章:函數(shù)的應(yīng)用
函數(shù)的應(yīng)用是學(xué)習(xí)函數(shù)的一個(gè)重要方面,學(xué)生學(xué)習(xí)函數(shù)的應(yīng)用,目的就
是利用已有的函數(shù)知識(shí)分析問題和解決問題.通過函數(shù)的應(yīng)用,對(duì)完善函數(shù)思想,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),培養(yǎng)分析問題、解決問題的能力,增強(qiáng)進(jìn)行實(shí)踐的能力等,都有很大的幫助。
1.了解函數(shù)與方程之間的關(guān)系;會(huì)用二分法求簡(jiǎn)單方程的近似解;了解函數(shù)模型及其意義;
2.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識(shí)與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
必修4:主要涉及三章內(nèi)容:
第一章:三角函數(shù)
通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識(shí)三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價(jià)值,學(xué)會(huì)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識(shí)。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章:平面向量
在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;
4.理解平面向量數(shù)量積的含義,會(huì)用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。
第三章:三角恒等變換
通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一數(shù)學(xué)教學(xué)計(jì)劃10
進(jìn)一步深化教育教學(xué)改革,樹立全新的語文教育觀,構(gòu)建全新而科學(xué)的教學(xué)目標(biāo)體系、數(shù)學(xué)網(wǎng)特制定高一上學(xué)期數(shù)學(xué)函數(shù)的基本性質(zhì)教學(xué)計(jì)劃模板。
教材分析
函數(shù)性質(zhì)是函數(shù)的固有屬性,是認(rèn)識(shí)函數(shù)的重要手段,而函數(shù)性質(zhì)可以由函數(shù)圖象直觀的反應(yīng)出來,因此,函數(shù)各個(gè)性質(zhì)的學(xué)習(xí)要從特殊的、已知的圖象入手,抽象出此類函數(shù)的共同特征,并用數(shù)學(xué)語言來定義敘述;诖,本節(jié)的概念課教學(xué)要注重引導(dǎo),注重知識(shí)的形成過程,習(xí)題課教學(xué)以具體技巧、方法作為輔助練習(xí)。
學(xué)情分析
學(xué)生對(duì)函數(shù)概念重新認(rèn)識(shí)之后,可以結(jié)合初中學(xué)過的簡(jiǎn)單函數(shù)的圖象對(duì)函數(shù)性質(zhì)進(jìn)行抽象定義。另外,為了方便學(xué)生做題及熟悉函數(shù)性質(zhì),還需要補(bǔ)充一些函數(shù)圖象的知識(shí),例如平移、二次函數(shù)圖象、含絕對(duì)值函數(shù)的圖象、反比例函數(shù)及其變形的函數(shù)圖象?傊竟(jié)課的教學(xué)要從學(xué)生認(rèn)知實(shí)際出發(fā),堅(jiān)持從圖象中來到圖象中去的原則。
教學(xué)建議
以圖象作為切入點(diǎn)進(jìn)行概念課教學(xué),引導(dǎo)學(xué)生對(duì)概念的形成有一個(gè)清晰的認(rèn)識(shí),尤其是概念中的部分關(guān)鍵詞要做深入講解,用函數(shù)圖象指導(dǎo)學(xué)生做題。
教學(xué)目標(biāo)
知識(shí)與技能
(1)能理解函數(shù)單調(diào)性、最值、奇偶性的圖形特征
(2)會(huì)用單調(diào)性定義證明具體函數(shù)的單調(diào)性;會(huì)求函數(shù)的最值;會(huì)用奇偶性定義判斷函數(shù)奇偶性
(3)單調(diào)性與奇偶性的綜合題
(4)培養(yǎng)學(xué)生觀察、歸納、推理的抽象思維能力
過程與方法
(1)從觀察具體函數(shù)的圖像特征入手,結(jié)合相應(yīng)問題引導(dǎo)學(xué)生一步步轉(zhuǎn)化到用數(shù)學(xué)語言形式化的建立相關(guān)概念
(2)滲透數(shù)形結(jié)合的數(shù)學(xué)思想進(jìn)行習(xí)題課教學(xué)
情感、態(tài)度與價(jià)值觀
(1)使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的一般規(guī)律:從特殊到一般,抽象歸納
(2)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力,進(jìn)一步規(guī)范學(xué)生用數(shù)學(xué)語言、數(shù)學(xué)符號(hào)進(jìn)行表達(dá)
課時(shí)安排
(1)概念課:?jiǎn)握{(diào)性2課時(shí),最值1課時(shí),奇偶性1課時(shí)
(2)習(xí)題課:5課時(shí)
高一數(shù)學(xué)教學(xué)計(jì)劃11
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5第一章:解三角形;重點(diǎn)是正弦定理與余弦定理;難點(diǎn)是正弦定理與余弦定理的應(yīng)用;第二章:數(shù)列;重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和;難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用;第三章:不等式;重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問題、基本不等式;難點(diǎn)是二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問題及應(yīng)用;
必修2第一章:空間幾何體;重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積;難點(diǎn)是空間幾何體的三視圖;第二章:點(diǎn)、直線、平面之間的位置關(guān)系;重點(diǎn)與難點(diǎn)都是直線與平面平行及垂直的判定及其性質(zhì);第三章:直線與方程;重點(diǎn)是直線的傾斜角與斜率及直線方程;難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目;第四章:圓與方程;重點(diǎn)是圓的方程及直線與圓的位置關(guān)系;難點(diǎn)是直線與圓的位置關(guān)系;
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識(shí)水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對(duì)學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、教學(xué)目的要求
1.通過對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問題和與測(cè)量及幾何計(jì)算有關(guān)的實(shí)際問題。
2.通過日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識(shí)解決相應(yīng)的問題。
3.理解不等式(組)對(duì)于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡(jiǎn)單的二元線性規(guī)劃問題。
4.幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計(jì)算是認(rèn)識(shí)和探索幾何圖形及其性質(zhì)的方法。先從對(duì)空間幾何體的整體觀察入手,認(rèn)識(shí)空間圖形及其直觀圖的畫法;再以長(zhǎng)方體為載體,直觀認(rèn)識(shí)和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對(duì)某些結(jié)論進(jìn)行論證。另外了解一些簡(jiǎn)單幾何體的表面積與體積的計(jì)算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會(huì)數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時(shí)對(duì)學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
五、教學(xué)進(jìn)度
周次 | 課、章、節(jié) | 教 學(xué) 內(nèi) 容 | 備 注 |
1 | 1.1,1.2 | 解三角形 | |
2 | 1.2 | 解三角形 | |
3 | 2.1,2.2 | 數(shù)列的概念與簡(jiǎn)單表示法,等差數(shù)列 | |
4 | 2.3 | 等差數(shù)列的前n項(xiàng)和 | |
5 | 2.4,2.5 | 等比數(shù)列及前n項(xiàng)和 | |
6 | 2.5 | ||
7 | 3.1,3.2 | 不等關(guān)系與不等式,一元二次不等式及其解法 | |
8 | 3.3,3.4 | 二元一次不等式(組)與簡(jiǎn)單線性規(guī)劃問題,基本不等式 | |
9 | 考試,復(fù)習(xí) | ||
10 | 期中考試 | ||
11 | 1.1,1.2 | 空間幾何體的結(jié)構(gòu),三視圖,直觀圖 | |
12 | 1.3 | 空間幾何體的表面積與體積 | |
13 | 2.1,2.2 | 空間點(diǎn)、直線、平面的位置關(guān)系,直線、平面平行的判定及其性質(zhì) | |
14 | 2.3 | 直線、平面的判定及其性質(zhì) | |
15 | 3.1,3.2 | 直線的傾斜角與斜率,直線方程 | |
16 | 3.3 | 直線的`交點(diǎn)坐標(biāo)與距離公式 | |
17 | 4.1,4.2 | 圓的方程,直線、圓的位置關(guān)系 | |
18 | 4.3 | 空間直角坐標(biāo)系 | |
19 | 復(fù)習(xí) | ||
20 | 考試 |
高一數(shù)學(xué)教學(xué)計(jì)劃12
一、具體目標(biāo):
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的本事。
4、發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)……
二、本學(xué)期要到達(dá)的教學(xué)目標(biāo)
1、雙基要求:
在基礎(chǔ)知識(shí)方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其資料反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照必須的程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、能使用計(jì)數(shù)器及簡(jiǎn)單的推理、畫圖。
2、本事培養(yǎng):
能運(yùn)用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,構(gòu)成良好的思維品質(zhì);會(huì)根據(jù)法則、公式正確的進(jìn)行運(yùn)算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計(jì)運(yùn)算途徑;會(huì)提出、分析和解決簡(jiǎn)單的帶有實(shí)際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,構(gòu)成數(shù)學(xué)的意思;從而經(jīng)過獨(dú)立思考,會(huì)從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。
3、思想教育:
培養(yǎng)高一學(xué)生,學(xué)習(xí)數(shù)學(xué)的興趣、信心和毅力及實(shí)事求是的科學(xué)態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學(xué)的美學(xué)價(jià)值,并懂的數(shù)學(xué)來源于實(shí)踐又反作用于實(shí)踐的觀點(diǎn);數(shù)學(xué)中普遍存在的對(duì)立統(tǒng)一、運(yùn)動(dòng)變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn)。
三、進(jìn)度授課計(jì)劃及進(jìn)度表
。裕
高一數(shù)學(xué)教學(xué)計(jì)劃13
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過一個(gè)實(shí)際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識(shí)的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識(shí)的探究過程中.同時(shí),通過對(duì)《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對(duì)今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點(diǎn)間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.
學(xué)情分析
一方面學(xué)生通過對(duì)空間幾何體:柱、錐、臺(tái)、球的學(xué)習(xí),處理了空間中點(diǎn)、線、面的關(guān)系,初步掌握了簡(jiǎn)單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對(duì)建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識(shí),因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).
教學(xué)目標(biāo)
1.知識(shí)與技能
、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
②了解空間直角坐標(biāo)系,掌握空間點(diǎn)的坐標(biāo)的確定方法和過程
、鄹惺茴惐人枷朐谔骄啃轮R(shí)過程中的作用
2.過程與方法
、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
②類比學(xué)習(xí),循序漸進(jìn)
3.情感態(tài)度與價(jià)值觀
通過用類比的數(shù)學(xué)思想方法探究新知識(shí),使學(xué)生感受新舊知識(shí)的聯(lián)系和研究事物從低維到高維的一般方法.通過實(shí)際問題的引入和解決,讓學(xué)生體會(huì)數(shù)學(xué)的實(shí)踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間.
教學(xué)重點(diǎn)
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對(duì)今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點(diǎn)確立為空間直角坐標(biāo)系的理解.
教學(xué)難點(diǎn)
通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點(diǎn)的坐標(biāo)。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會(huì)用坐標(biāo)刻畫平面內(nèi)任意點(diǎn)的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點(diǎn)的位置.總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.
高一數(shù)學(xué)教學(xué)計(jì)劃14
一、教學(xué)分析
1、分析教材
本章教材整體主要分成三大部分:
(1)、圓的標(biāo)準(zhǔn)方程與一般方程;
(2)、直線與圓、圓與圓的位置關(guān)系;
(3)、空間直角坐標(biāo)系以及空間兩點(diǎn)間的距離公式。
圓的方程是在前一章直線方程基礎(chǔ)上引入的新的曲線方程,更進(jìn)一步要求“數(shù)與形”結(jié)合。所以學(xué)習(xí)有關(guān)圓的方程時(shí),仍仍然沿用直線方程中使用的坐標(biāo)法,繼續(xù)運(yùn)用坐標(biāo)法研究直線與圓、圓與圓的位置關(guān)系等幾何問題。此外還要學(xué)習(xí)空間直角坐標(biāo)系的有關(guān)知識(shí),以便為今后用坐標(biāo)法研究空間幾何對(duì)象奠定基礎(chǔ)。這些知識(shí)是進(jìn)一步學(xué)習(xí)圓錐曲線方程、導(dǎo)數(shù)和積分的基礎(chǔ)。
2、分析學(xué)生
高中一年級(jí)的學(xué)生還沒有建立起比較好的數(shù)形結(jié)合的思想,前面學(xué)習(xí)過直線知識(shí),只是使學(xué)生有了用坐標(biāo)法研究問題的基本思路,通過圓的概念的引入及其現(xiàn)實(shí)生活中圓的例子,啟發(fā)學(xué)生學(xué)習(xí)的興趣及研究問題的方法,培養(yǎng)學(xué)生分析探索問題的能力,熟練的掌握解決解析幾何問題的方法-坐標(biāo)法,滲透數(shù)形結(jié)合的思想研究問題時(shí)抓住問題的本質(zhì),研究細(xì)致思考,規(guī)范得出解答,體現(xiàn)運(yùn)動(dòng)變化,對(duì)立統(tǒng)一的思想
3、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):圓的標(biāo)準(zhǔn)方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系的基本認(rèn)識(shí)。
難點(diǎn):直線與圓的方程的應(yīng)用;會(huì)求解簡(jiǎn)單的直線與圓的相關(guān)曲線的方程;建立空間直角坐標(biāo)系。
二、教學(xué)目標(biāo)
1、掌握?qǐng)A的定義和圓標(biāo)準(zhǔn)方程、一般方程的概念;能根據(jù)圓的方程求圓心和半徑,初步掌握求圓的方程的方法。
2、掌握直線與圓的位置關(guān)系的判定。
3、在進(jìn)一步培養(yǎng)學(xué)生類比、數(shù)形結(jié)合、分類討論和化歸的數(shù)學(xué)思想方法的過程中,提高學(xué)生學(xué)習(xí)能力。
4、培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和理論聯(lián)系實(shí)際思想。
三、教學(xué)策略
1、教學(xué)模式
本節(jié)內(nèi)容是運(yùn)用“問題解決”課堂教學(xué)模式的一次嘗試,采用探究、討論的
教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,掌握數(shù)學(xué)基本知識(shí)和基本能力,培養(yǎng)積極探索和團(tuán)結(jié)協(xié)作的科學(xué)精神。
2、教學(xué)方法與手段--充分利用信息技術(shù),合理整合課程資源
采用探究、討論的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲采用多媒體技術(shù),目的在于充分利用其優(yōu)良的傳播功能,大容量信息的呈現(xiàn)和生動(dòng)形象的演示(尤其是動(dòng)畫效果)對(duì)提高學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維、加深概念理解有積極作用。制作中,采用交互技術(shù),使課件的機(jī)動(dòng)性得到加強(qiáng)。
四、對(duì)內(nèi)容安排的說明
本章分三部分:圓的標(biāo)準(zhǔn)方程與一般方程;直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系。
1、建立圓的方程是本節(jié)的主要內(nèi)容之一。根據(jù)圓的幾何特征(主要是動(dòng)點(diǎn)與定點(diǎn)間距離恒定)建立適當(dāng)?shù)淖鴺?biāo)系,再根據(jù)曲線上的點(diǎn)所滿足的幾何條件,求出點(diǎn)的坐標(biāo)所滿足的曲線方程。
通過研究方程來研究曲線的性質(zhì)是解析幾何的另一個(gè)主要內(nèi)容,這就是解析幾何通過代數(shù)方法研究幾何圖形的特點(diǎn),也就是坐標(biāo)法。始終強(qiáng)調(diào)曲線方程與曲線圖像之間的一一對(duì)應(yīng)。這一思想應(yīng)該貫穿于整個(gè)圓的教學(xué)。
2.通過方程,研究直線與圓、圓與圓的位置關(guān)系是本章的主要內(nèi)容之一。判斷直線與圓、圓與圓的位置關(guān)系可以從兩個(gè)方面著手:
(1)。兩條曲線有無公共點(diǎn),等價(jià)于由它們方程聯(lián)立的方程組有無實(shí)數(shù)解。方程組有幾組實(shí)數(shù)解,這兩條曲線就有幾個(gè)公共點(diǎn);方程組沒有實(shí)數(shù)解,這兩條曲線就沒有公共點(diǎn)。
(2)。運(yùn)用平面幾何知識(shí),把直線與圓、圓與圓位置關(guān)系的結(jié)論轉(zhuǎn)化為相應(yīng)的代數(shù)結(jié)論。
3、坐標(biāo)法是研究幾何問題的重要方法,在教學(xué)過程中,應(yīng)該始終貫穿坐標(biāo)法這一重要思想,不怕重復(fù);通過坐標(biāo)系,把點(diǎn)和坐標(biāo)、曲線和方程聯(lián)系起來,實(shí)現(xiàn)形和數(shù)的統(tǒng)一。
用坐標(biāo)法解決幾何問題時(shí),先用坐標(biāo)和方程表示相應(yīng)的幾何對(duì)象,然后對(duì)坐標(biāo)和方程進(jìn)行代數(shù)討論;最后再把代數(shù)運(yùn)算結(jié)果翻譯成相應(yīng)的幾何結(jié)論。這就是用坐標(biāo)法解決平面幾何問題的“三步曲”:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;
第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;
第三步:把代數(shù)運(yùn)算結(jié)果翻譯成幾何結(jié)論。
五、教學(xué)評(píng)價(jià)
、暹^程性評(píng)價(jià)
1、教學(xué)過程中,教師的講解和學(xué)生的練習(xí)緊扣教學(xué)目標(biāo),內(nèi)容深淺要分層次,設(shè)計(jì)的問題要照顧好、中、差。
2、對(duì)于方程的推導(dǎo)運(yùn)用的方法,學(xué)生理解起來難度較大,主要采用讓學(xué)生理解的基礎(chǔ)上進(jìn)行檢測(cè)反饋
、娼K結(jié)性評(píng)價(jià)
1、課程內(nèi)容全部結(jié)束后,讓學(xué)生分組交流、討論后,選代表談收獲、體會(huì)和感想。
2、留課后作業(yè)(扣教學(xué)目標(biāo)、分類型、分層次,落實(shí)學(xué)生為主體),讓學(xué)生認(rèn)真理解和鞏固,了解圓的標(biāo)準(zhǔn)方程和一般方程,以及直線與圓位置關(guān)系,做完課后習(xí)題,做好作業(yè)。
高一數(shù)學(xué)教學(xué)計(jì)劃15
一、內(nèi)容及其解析
1。內(nèi)容:這是一節(jié)建立直線的點(diǎn)斜式方程(斜截式方程)的概念課。學(xué)生在此之前已學(xué)習(xí)了在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素,已知直線上的一點(diǎn)和直線的傾斜角(斜率)可以確定一條直線,已知兩點(diǎn)也可以確定一條直線。本節(jié)要求利用確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角,建立直線方程,通過方程研究直線。
2。解析:直線方程屬于解析幾何的基礎(chǔ)知識(shí),是研究解析幾何的開始。從整體來看,直線方程初步體現(xiàn)了解析幾何的實(shí)質(zhì)用代數(shù)的知識(shí)研究幾何問題。從集合與對(duì)應(yīng)的角度構(gòu)建了平面上的直線與二元一次方程的一一對(duì)應(yīng)關(guān)系,是學(xué)習(xí)解析幾何的基礎(chǔ)。對(duì)后續(xù)圓、直線與圓的位置關(guān)系等內(nèi)容的學(xué)習(xí),無論是知識(shí)上還是方法上都有著積極的意義。從本節(jié)來看,學(xué)生對(duì)直線既是熟悉的,又是陌生的。熟悉是學(xué)生知道一次函數(shù)的圖像是直線,陌生是用解析幾何的方法求直線的方程。直線的點(diǎn)斜式方程是推導(dǎo)其它直線方程的基礎(chǔ),在直線方程中占有重要地位。
二、目標(biāo)及其解析
1。目標(biāo)
掌握直線的點(diǎn)斜式和斜截式方程的推導(dǎo)過程,并能根據(jù)條件熟練求出直線的點(diǎn)斜式方程和斜截式方程。
2。解析
、僦乐本上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。知道建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。
、诶斫饨⒅本點(diǎn)斜式方程就是用直線上任意一點(diǎn)與已知點(diǎn)這兩個(gè)點(diǎn)的坐標(biāo)表示斜率。
、劢(jīng)歷直線的點(diǎn)斜式方程的推導(dǎo)過程,體會(huì)直線和直線方程之間的關(guān)系,滲透解析幾何的基本思想。
、茉谟懻撝本的點(diǎn)斜式方程的應(yīng)用條件與建立直線的斜截式方程中,體會(huì)分類討論的思想,體會(huì)特殊與一般思想。
⑤在建立直線方程的過程中,體會(huì)數(shù)形結(jié)合思想。在直線的斜截式方程與一次函數(shù)的比較中,體會(huì)兩者區(qū)別與聯(lián)系,特別是體會(huì)兩者數(shù)形結(jié)合的區(qū)別,進(jìn)一步體會(huì)解析幾何的基本思想。
三、教學(xué)問題診斷分析
1。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù),知道一次函數(shù)的圖像是一條直線,因此學(xué)生對(duì)研究直線的方程可能心存疑慮,產(chǎn)生疑慮的原因是學(xué)生初次接觸到解析幾何,不明確解析幾何的實(shí)質(zhì),因此應(yīng)跟學(xué)生講請(qǐng)解析幾何與函數(shù)的區(qū)別。
2。學(xué)生能聽懂建立直線的點(diǎn)斜式的過程,但可能會(huì)不知道為什么要這么做。因此還是要跟學(xué)生講清坐標(biāo)法的實(shí)質(zhì)把幾何問題轉(zhuǎn)化成代數(shù)問題,用代數(shù)運(yùn)算研究幾何圖形性質(zhì)。
3。由于學(xué)生沒有學(xué)習(xí)曲線與方程,因此學(xué)生難以理解直線與直線的方程,甚至認(rèn)為驗(yàn)證直線是方程的直線是多余的。這里讓學(xué)生初步理解就行,隨著后面教學(xué)的深入和反復(fù)滲透,學(xué)生會(huì)逐步理解的。
四、教法與學(xué)法分析
1、教法分析
新課標(biāo)指出,學(xué)生是教學(xué)的主體。教師要以學(xué)生活動(dòng)為主線。在原有知識(shí)的基礎(chǔ)上,構(gòu)建新的知識(shí)體系。本節(jié)課可采用啟發(fā)式問題教學(xué)法教學(xué)。通過問題串,啟發(fā)學(xué)生自主探究來達(dá)到對(duì)知識(shí)的發(fā)現(xiàn)和接受。通過縱向挖掘知識(shí)的深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新精神。并且使學(xué)生的有效思維量加大,隨著對(duì)新知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行,使學(xué)生在解決問題的同時(shí),形成方法。
2、學(xué)法分析
改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅僅限于對(duì)概念結(jié)論和技能的記憶、模仿和積累。獨(dú)立思考,自主探索,動(dòng)手實(shí)踐,合作交流,閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動(dòng)性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的再創(chuàng)造的過程。為學(xué)生形成積極主動(dòng)的、多樣的學(xué)習(xí)方式創(chuàng)造有利的條件。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨(dú)立思考,積極探索的習(xí)慣。
通過直線的點(diǎn)斜式方程的推導(dǎo),加深對(duì)用坐標(biāo)求方程的理解;通過求直線的點(diǎn)斜式方程,理解一個(gè)點(diǎn)和方向可以確定一條直線;通過求直線的斜截式方程,熟悉用待定系數(shù)法求的過程,讓學(xué)生利用圖形直觀啟迪思維,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性思維質(zhì)的飛躍。讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
五、教學(xué)過程設(shè)計(jì)
問題1:在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素是什么?如何將這些幾何要素代數(shù)化?
[設(shè)計(jì)意圖]讓學(xué)生理解直線上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。
問題2:建立直線方程的實(shí)質(zhì)是什么?
[設(shè)計(jì)意圖]建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。也就是將直線上點(diǎn)的坐標(biāo)滿足的條件用方程表示出來。
引例:若直線經(jīng)過點(diǎn),斜率為,點(diǎn)在直線上運(yùn)動(dòng),那么點(diǎn)的坐標(biāo)滿足什么條件?
[設(shè)計(jì)意圖]讓學(xué)生通過具體例子經(jīng)歷求直線的點(diǎn)斜式方程的過程,初步了解求直線方程的步驟。
問題2。1要得到坐標(biāo)滿足什么條件,就是找出與、斜率為之間的關(guān)系,它們之間有何種關(guān)系?
。ㄟ^與兩點(diǎn)的直線的斜率為)
[設(shè)計(jì)意圖]讓學(xué)生尋找確定直線的條件,體會(huì)動(dòng)中找靜。
問題2。2如何將上述條件用代數(shù)形式表示出來?
[設(shè)計(jì)意圖]讓學(xué)生理解和體會(huì)用坐標(biāo)表示確定直線的條件。
用代數(shù)式表示出來就是,即。
問題2。3為什么說是滿足條件的直線方程?
[設(shè)計(jì)意圖]讓學(xué)生初步感受直線與直線方程的關(guān)系。
此時(shí)的坐標(biāo)也滿足此方程。所以當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),其坐標(biāo)滿足。
另外以方程的解為坐標(biāo)的點(diǎn)也在直線上。
所以我們得到經(jīng)過點(diǎn),斜率為的直線方程是。
問題2。4:能否說方程是經(jīng)過,斜率為的直線方程?
[設(shè)計(jì)意圖]讓學(xué)生初步感受直線(曲線)方程的完備性。盡管學(xué)生不可能深刻理解直線(曲線)方程的完備性,但在這里仍要滲透,為后因理解曲線方程的埋下伏筆。
問題3:推廣:已知一直線過一定點(diǎn),且斜率為k,怎樣求直線的方程?
[設(shè)計(jì)意圖]由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的是歸納概括能力。
問題4:直線上有無數(shù)個(gè)點(diǎn),如何才能選取所有的點(diǎn)?以前學(xué)習(xí)中有沒有類似的處理問題的方法?
[設(shè)計(jì)意圖]引導(dǎo)學(xué)生掌握解析幾何取點(diǎn)的方法。
引導(dǎo)學(xué)生求出直線的點(diǎn)斜式方程
注:在求直線方程的過程中要說明直線上的點(diǎn)的坐標(biāo)滿足方程,也要說明以方程的解為坐標(biāo)的點(diǎn)在直線上,即方程的解與直線上的點(diǎn)的坐標(biāo)是一一對(duì)應(yīng)的。為以后學(xué)習(xí)曲線與方程打好基礎(chǔ)。教學(xué)中讓學(xué)生感覺到這一點(diǎn)就可以。不必做過多解釋。
問題5:從求直線方程的過程中,你知道了求幾何圖形的方程的步驟有哪些嗎?
[設(shè)計(jì)意圖]讓學(xué)生初步感受解析幾何求曲線方程的步驟。
、僭O(shè)點(diǎn)———用表示曲線上任一點(diǎn)的坐標(biāo);
②尋找條件————寫出適合條件;
、哿谐龇匠獭米鴺(biāo)表示條件,列出方程
、芑(jiǎn)———化方程為最簡(jiǎn)形式;
、葑C明————證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
例1分別求經(jīng)過點(diǎn),且滿足下列條件的直線的方程,并畫出直線。
⑴傾斜角
、菩甭
、桥c軸平行;
、扰c軸平行。
[設(shè)計(jì)意圖]讓學(xué)生掌握直線的點(diǎn)斜式的使用條件,把直線的點(diǎn)斜式方程作公式用,讓學(xué)生熟練掌握直線的點(diǎn)斜式方程,并理解直線的點(diǎn)斜式方程使用條件。
注:⑴應(yīng)用直線的點(diǎn)斜式方程的條件是:①定點(diǎn),②斜率存在,即直線的傾斜角。
、婆c的區(qū)別。后者表示過,且斜率為k的直線方程,而前者不包括。
⑶當(dāng)直線的傾斜角時(shí),直線的斜率,直線方程是。
、犬(dāng)直線的傾斜角時(shí),此時(shí)不能直線的點(diǎn)斜式方程表示直線,直線方程是。
練習(xí):1。。
2。已知直線的方程是,則直線的斜率為,傾斜角為,這條直線經(jīng)過的一個(gè)已知點(diǎn)為。
[設(shè)計(jì)意圖]在直線的點(diǎn)斜式方程的逆用過程中,進(jìn)一步體會(huì)和理解直線的點(diǎn)斜式方程。
問題6:特別地,如果直線的斜率為,且與軸的交點(diǎn)坐標(biāo)為(0,b),求直線的方程。
[設(shè)計(jì)意圖]由一般到特殊,培養(yǎng)學(xué)生的推理能力,同時(shí)引出截距的概念和直線斜截式方程。
將斜率與定點(diǎn)代入點(diǎn)斜式直線方程可得:
說明:我們把直線與y軸交點(diǎn)(0,b)的縱坐標(biāo)b叫做直線在y軸上的截距。這個(gè)方程是由直線的斜率與它在y軸上的截距b確定,所以叫做直線的斜截式方程。
注(1)截距可取任意實(shí)數(shù),它不同于距離。直線在軸上截距的是。
。2)斜截式方程中的k和b有明顯的幾何意義。
。3)斜截式方程的使用范圍和斜截式一樣。
問題7:直線的斜截式方程與我們學(xué)過的一次函數(shù)的類似。我們知道,一次函數(shù)的圖像是一條直線。你如何從直線方程的角度認(rèn)識(shí)一次函數(shù)?一次函數(shù)中k和b的幾何意義是什么?
[設(shè)計(jì)意圖]讓學(xué)生理解直線方程與一次函數(shù)的區(qū)別與聯(lián)系,進(jìn)一步理解解析幾何的實(shí)質(zhì)。函數(shù)圖像是以形助數(shù),而解析幾何是以數(shù)論形。
練習(xí):1。。
2。直線的斜率為2,在軸上的截距為,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生明確截距的含義。
3。直線過點(diǎn),它的斜率與直線的斜率相等,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生進(jìn)一步理解直線斜截式方程的結(jié)構(gòu)特征。
4。已知直線過兩點(diǎn)和,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生能合理選擇直線方程的不同形式求直線方程,同時(shí)為下節(jié)學(xué)習(xí)直線的兩點(diǎn)式方程埋下伏筆。
例2:已知直線,試討論
(1)與平行的條件是什么?
(2)與重合的條件是什么?
。3)與垂直的條件是什么?
說明:①平行、重合、垂直都是幾何上位置關(guān)系,如何用代數(shù)的數(shù)量關(guān)系來刻畫。
、诮虒W(xué)中從兩個(gè)方面來說明,若兩直線平行,則且反過來,若且,則兩直線平行。
、廴糁本的斜率不存在,與之平行、垂直的條件分別是什么?
練習(xí):
問題8:本節(jié)課你有哪些收獲?
要點(diǎn):
。1)直線方程的點(diǎn)斜式、斜截式的命名都是顧名思義的,要會(huì)加以區(qū)別。
。2)兩種形式的方程要在熟記的基礎(chǔ)上靈活運(yùn)用。
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。
【高一數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:
數(shù)學(xué)高一教學(xué)計(jì)劃04-26
高一的數(shù)學(xué)教學(xué)計(jì)劃06-07
高一數(shù)學(xué)教學(xué)計(jì)劃08-21
高一數(shù)學(xué)的教學(xué)計(jì)劃05-04
高一學(xué)生數(shù)學(xué)教學(xué)計(jì)劃03-30
高一數(shù)學(xué)的教學(xué)計(jì)劃05-25
高一數(shù)學(xué)教學(xué)計(jì)劃03-07
高一優(yōu)秀數(shù)學(xué)教學(xué)計(jì)劃05-21